
Building a simple Proxy Fuzzer for the
MQTT protocol using the Polymorph

framework

@santiagohramos

https://github.com/shramos/polymorph

This article shows how easy you can build a fuzzer for the MQTT protocol by using the

Polymorph framework.

I will start by assuming that the reader knows the MQTT protocol. For those who do not

know it, you can find more information here. The first thing we will do is prepare the
environment where we will perform the fuzzing, in this case, it will be very simple, a Kali Linux
machine in which we will install the following dependencies:

Polymorph framework

apt-get install build-essential python-dev libnetfilter-queue-dev tshark tcpdump python3-
pip wireshark

pip3 install --process-dependency-links polymorph

Mosquitto

apt-get install mosquitto mosquitto-clients

Radamsa

sudo apt-get install gcc make git wget

git clone https://github.com/aoh/radamsa.git && cd radamsa && make && sudo make
install

With all this installed, we are ready to start!

Before starting the construction of the fuzzer, we are going to test our mosquitto

installation in localhost. To do this, we are going to open two terminals and execute a client that
is going to subscribe to a certain topic and another one that publishes to that same topic. In the
following image you can see the commands and the result.

Well, now that we have tested the communication between both clients, we are going to
open Polymorph and begin with the capture and modification of MQTT packets in real time.

https://github.com/shramos/polymorph
http://mqtt.org/
https://github.com/shramos/polymorph
https://mosquitto.org/
https://github.com/aoh/radamsa

In our particular case, we are going to fuzz the msg field of the MQTTPublish packets,
notice that the modification of any other field would be done in exactly the same way. Also, for
simplicity, we are going to modify MQTT packets that implement the IPv4 protocol. Sometimes
you will see that Polymorph captures the MQTT protocol over IPv6, to temporarily disable IPv6
you can use the following command over the loopback interface:

sudo sh -c 'echo 1 > /proc/sys/net/ipv6/conf/loopback/disable_ipv6'

Having said that, we are going to access the Polymorph main interface, to do that, we

only have to introduce the polymorph command from a Linux terminal.

Once here, let´s start with the construction of the fuzzer. As in this case we will not
need to intercept the communication between two machines because the clients will be in
localhost, we do not need to use any spoofing technique. We can simply use the capture
command to start the packet sniffing process.

Our goal at this point is to capture one of the packets that we want to modify, so that the
framework converts it into a template and we can work on it. Therefore, while the tool is sniffing
packets, we place ourselves in our MQTT client and send an MQTTPublish message to the
client that is listening.

Once this is done, we use Ctr-C to finish the sniffing process in Polymorph and use the

show command to show the captured packets on the screen.

As you can see, most of the packets include a last Raw layer, which means that, at first
glance, they have not been interpreted/dissected correctly by the primary dissectors. With the
dissect command, we use more advanced dissectors that give us a representation of the part
of the packets that have not been represented.

Now that we have a more concrete representation of all the bytes of the packets that we
have captured, what we must do is choose the template that corresponds to the packet that we
want to modify. We can use the wireshark command to open this application and perform a
more detailed filtering. Once the template is selected, we access it using the template
command.

Right now, we are in the context of the selected template. With the show command we
can see the different layers and fields that it has, as well as the type of them. The template
concept is the most important abstraction of the framework, and it is what allows the user to
access the captured packets in real time using simple syntax in the code he writes to perform
complex processing on them. Furthermore, it is the container in which all the conditional
functions and structures of the framework are stored when we save a session.

Once this is done, the conditional functions come into play (preconditions,

postconditions and executions). When the user enters the intercept command in the
template interface, the machine that hosts Polymorph will stop forwarding the packets at the
kernel level and start sending those packages to the tool to be processed before being
forwarded. The conditional functions defined by the user will be executed in each of the
intercepted packets.

Let's see a simple example of how these functions work, we are going to add the

following precondition to our current template using the command precs -a test_condition.

if you are using the default editor, pico, remember not to mix tabs and spaces, better use only
spaces to indent the code. (You can specify another editor that is in your PATH using the option
-e):

1.
2. def test_precondition(packet):
3. print("The next packet arrive:")
4. print(packet.raw)
5. return packet

Enter "y" to keep the code on disk and enter precs -s to visualize the added precondition.

Now, introduce the intercept command:

Look how all the packets that flow through the machine are processed by the tool in real
time and the precondition we have added is executed on each of them. We can test it just by
sending a MQTTPublish message from one MQTT client to the broker.

The conditional functions are another important abstraction of the framework and work

as follows. When a packet is intercepted in real time, the conditional functions defined by the
user are executed on it following a certain order, first the preconditions are executed in the
order in which the user has added them to the template, then the executions and finally the
postconditions. If at any point of the execution of any of the three types of conditional
functions the value None is returned by one of them, the execution chain is broken and the
packet is forwarded as it is at that moment. On the other hand, if the packet that is received as
an argument is returned, the chain of execution of conditions continues. Remember that the
packet that is received as argument is the packet that has been intercepted in real time at that
moment.

Once this is understood, we are going to exit the intercept mode in Polymorph by

entering Ctr-C (in this way, the machine that hosts Polymorph only forwards the packets without
passing them through the tool). After that, we are going to add the following preconditions,
executions and postconditions, which, I insist, when we start intercepting will be executed on
each of the packets that are intercepted. To eliminate the test precondition that we added
before, use precs -d test_condition.

Preconditions

Two preconditions have been added using the commands:

precs -a global_vars -e editor
precs -a filter_mqttpublish -e editor

The first precondition, global_vars, is creating a global variable that will remain constant for all
intercepted packets. It will be used to store all the test cases that we will use to fuzz the
MQTTPublish packets.

1.
2. def global_vars(packet):
3. try:
4. packet.fuzz_cases
5. except:
6. setattr(packet, 'fuzz_cases', [])
7. return packet
8.

On the other hand, the second precondition, filter_mqttpublish, will filter the incoming

packets so that they only continue executing the rest of the conditional functions those whose
msgtype field is equals to 48. Notice that thanks to the template abstraction, Polymorph knows
the position that the msgtype field occupies within the bytes of the intercepted packet, and
therefore, the user can access it much more easily.

1.
2. def filter_mqttpublish(packet):
3. try:
4. if packet['RAW.MQTT']['msgtype'] == 48:
5. return packet
6. except:
7. return None

Executions

The execution is a bit longer than the preconditions, but it remains simple. The piece of
code shown below performs the following tasks:

1. Transforms the intercepted packet into a Scapy representation. We do this to be able to
interact more easily with the fields of the MQTT layer, especially with the lengths, which
are encoded. I wrote the MQTT specification for Scapy a while ago, you can find it
here.

2. We check if fuzzing values remain in our list of test cases. The list is stored in the global
variable created above. If the list is empty, we invoke Radamsa to generate more test
cases and we stored them in the global variable.

3. Finally, we use Scapy to insert the fuzzing value in the msg field of the packet and we
eliminate that value from our list, so that it is not inserted twice. In addition, we
recalculate the control fields, such as lengths and chksums.

1.
2. def insert_value(packet):
3. import subprocess
4. from os import listdir
5. from os.path import join
6. from scapy.all import IP
7. from scapy.contrib.mqtt import MQTT
8. # Building a Scapy packet
9. pkt = IP(packet.raw[14:])
10. # Retrieving the fuzzing case
11. if not packet.fuzz_cases:
12. valid_cases = "valid_cases"
13. dpath = "fuzz_cases"
14. subprocess.check_call(["radamsa",
15. "-o",
16. join(dpath, "fuzz-%n.%s"),
17. "-n",
18. "58",
19. "-r",
20. valid_cases])
21. packet.fuzz_cases = [open(join(dpath, f), 'rb').read()
22. for f in listdir(dpath)]
23.

https://github.com/secdev/scapy/blob/master/scapy/contrib/mqtt.py

24. # Inserting the value and recalculating some fields
25. del pkt['IP'].len
26. del pkt['IP'].chksum
27. del pkt['TCP'].chksum
28. del pkt['MQTT'].len
29. del pkt['MQTTPublish'].length
30. pkt['MQTTPublish'].topic = packet.fuzz_cases.pop()
31. pkt.show2()
32. packet.raw = bytes(pkt)
33. return packet

1.

That's all we need to build a Proxy Fuzzer for the MQTT protocol using Polymorph!
To put it into operation, we will create two directories in the PATH from which we have run
Polymorph, one called valid_cases and another called fuzz_cases. These directories will be
used by Radamsa to read valid test cases and mutate them in cases that may unravel in a
possible vulnerability. We can add some valid cases like the following ones.

Once this is done we simply go to the template interface in Polymorph and enter the
intercept command. After that, we go to our MQTT client and publish a message, preferably
with a long value so that there are no problems with the sequence numbers of the TCP/IP
session.

We can observe how the packet is modified in real time and the value produced by
Radamsa is introduced. What we could do now is making a simple loop in Bash and let it test a
significant number of test values. Also, the most common thing would be that we run the

application that we are testing under a debugger, so we can capture the exceptions that occur
and analyze them.

1.
2. #!/bin/bash
3.
4. while true; do
5. mosquitto_pub -t `python3 -c "print('A'*10000)"` -m 'hello'
6. done

Finally, we can use the save command from the template interface to export the

template and import it into Polymorph with the command polymorph -t template.json in
another machine, so you can share it with your colleagues! I leave mine here!

https://gist.github.com/shramos/2b98867d2c344b36bfee6a7c799fbb8f

https://gist.github.com/shramos/2b98867d2c344b36bfee6a7c799fbb8f

