
Prisma by Palo Alto Networks | Kubernetes Privilege Escalation: Excessive Permissions in Popular Platforms | White Paper 1

Kubernetes Privilege
 Escalation: Excessive
Permissions in
Popular Platforms

2Prisma by Palo Alto Networks | Kubernetes Privilege Escalation: Excessive Permissions in Popular Platforms | White Paper

Table of Contents
Foreword . 3

Executive Summary . 4
RBAC Misconfigurations are Easy to Miss . 4

Powerful Permissions are Widespread . 4

Excessive Permissions Lead to Impactful Attacks . 4

RBAC Misconfigurations are Solvable .5

Role-Based Access Control 101 . 6

Classifying Powerful Kubernetes Permissions . 7
Acquire Tokens . .8

Remote Code Execution .8

Manipulate Authentication/Authorization (AuthN/AuthZ) . .8

Steal Pods .8

Meddler-in-the-Middle . .9

Container Escapes and Powerful DaemonSets: A Toxic Combination . 9
Aren’t Nodes Powerful by Default? . 10

Powerful DaemonSets in Popular Kubernetes Platforms . 10
Container Escape Blast Radius . 12

Powerful Kubelets in Popular Platforms . 13

Fixes and Mitigations by Affected Platforms . 13
Toward Better Node Isolation . 14

Identifying Powerful Permissions . 14
rbac-police . 15

Checkov . 16

Recommendations . 16
Detecting Attacks with Admission Control . 17

Suspicious SelfSubjectReviews . 17
Suspicious Assignment of Controller Service Accounts . 17

Conclusion . 17

About . 18
Prisma Cloud . 18

Unit 42 . 18

Authors . 18

Contributors . 18

Appendix A: Powerful Permissions by Attack Class . 19
Manipulate Authentication/Authorization (AuthN/AuthZ) . 19

Acquire Tokens . 19

Remote Code Execution . 19

Steal Pods . 20

Meddler-in-the-Middle . 20

3Prisma by Palo Alto Networks | Kubernetes Privilege Escalation: Excessive Permissions in Popular Platforms | White Paper

Foreword
Kubernetes adoption has skyrocketed in recent years, with more users deploying, testing, and con-
tributing to the project. Weak defaults are a typical growing pain for emerging and complex platforms,
and Kubernetes has been no exception. Today though, most Kubernetes® platforms have rooted out
insecure defaults, and previously widespread misconfigurations like Kubelets that allow unauthorized
access are becoming less and less common. Threat actors who were used to compromising clusters
through blatantly simple attacks are probably not very pleased with new improvements, but it seems
like the pragmatic ones are starting to evolve and target subtler issues.
Unit 42 recently witnessed that trend in the wild as they caught a sample of Siloscape—one of the most
sophisticated Kubernetes malware samples to date. Siloscape chained together multiple exploits to
compromise pods, escape and take over nodes, and ultimately gain control over entire clusters. Siloscape
demonstrated an approach that wasn’t previously seen in the wild: after compromising a node, it checked
whether it had excessive permissions and didn’t bother continuing the attack if it didn’t.
As simpler Kubernetes attacks lose relevance, adversaries have begun targeting excessive permissions
and Role-Based Access Control (RBAC) misconfigurations.
Kubernetes RBAC holds the potential to enforce least-privileged access
and demoralize attackers, but misconfigurations are easy to miss. Seem-
ingly restricted permissions are often surprisingly powerful, making basic
questions like “Which pods can escalate privileges?” difficult to answer. In
this report, we aim to address that problem. We introduce a framework that
classifies powerful permissions by the attacks they enable; map dozens of
the most powerful Kubernetes permissions to it; and release rbac-police,
an open source tool that can identify powerful permissions and privilege
escalation paths in Kubernetes clusters.
To understand the prevalence and impact of powerful permissions, we’ve
analyzed popular Kubernetes platforms—managed services, distributions,
and container network interfaces (CNIs)—and looked for infrastructure
components running with excessive permissions. In 62.5% of the Kubernetes
platforms reviewed, powerful DaemonSets distributed powerful creden-
tials across every node in the cluster. As a result, in 50% of platforms, a single
 container escape was enough to compromise the entire cluster.
We partnered with affected platforms to address these findings and strip
 excessive permissions. From the original 62.5% that ran powerful DaemonSets,
only 25% remain. Likewise, the percentage of platforms where container escape
was guaranteed to result in cluster takeover dropped from 50% to just 25%, with
more soon to follow. While this moves the needle in the right direction, RBAC
misconfigurations and excessive permissions are likely to remain a significant
Kubernetes security risk for the near future.

Read on to gain a better understanding of RBAC risks and how you can address them through open
source tools and best practice configurations. Learn to transform RBAC from a blind spot into an
additional layer of defense.

Kubernetes Role-Based Access
 Control (RBAC) is the main
 authorization scheme in Kubernetes,
and governs the permissions of
users, groups, pods, and nodes over
 Kubernetes resources .

DaemonSets are commonly used
to deploy infrastructure pods onto
all worker nodes .

https://unit42.paloaltonetworks.com/unsecured-kubernetes-instances/
https://unit42.paloaltonetworks.com/siloscape/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://www.github.com/PaloAltoNetworks/rbac-police

4Prisma by Palo Alto Networks | Kubernetes Privilege Escalation: Excessive Permissions in Popular Platforms | White Paper

Executive Summary
Kubernetes platforms have made significant strides in security in recent years, rooting out critical
misconfiguration and establishing secure baselines. With fewer clusters vulnerable to straightforward
attacks, threat actors are starting to adapt and look for techniques abusing subtler issues. Recent malware
samples indicate Kubernetes threat actors are beginning to target excessive permissions.
Kubernetes Role-Based Access Control (RBAC) is an authorization scheme that governs the permissions
of users, groups, service accounts, and pods over Kubernetes resources. When used correctly, RBAC can
enforce least-privileged access and demoralize attackers. When misconfigured, excessive permissions
expose the cluster to privilege escalation attacks and increase the blast radius of compromised creden-
tials and container escape.

RBAC Misconfigurations are Easy to Miss
Seemingly restricted permissions can be surprisingly powerful and, in some cases, on par with cluster
admin. As a result, open source add-ons and infrastructure components inadvertently ask for powerful
permissions, and users grant them without realizing the full impact on their cluster’s security.
Prisma® Cloud researchers identified dozens of powerful Kubernetes permissions, known and novel,
and classified them based on the attacks they enable into five major Kubernetes attack types.

Figure 1: Powerful Kubernetes permissions by attack class

Manipulate AuthN/Z

Acquire Tokens

RCE

Steal Pods

Meddler-in-the-Middle

1

6

0 2 4 6 8

7

6

of powerful permissions

7

7

Powerful Permissions are Widespread
To understand the prevalence of powerful permissions, Prisma Cloud researchers analyzed popular
Kubernetes platforms—managed services, distributions, and container network interfaces (CNIs)—to
identify powerful DaemonSets that distribute powerful credentials across every node in the cluster.
Out of the Kubernetes distributions and managed services examined, 75% ran powerful DaemonSets
by default. The remaining 25% did so as well given a recommended feature was enabled. Examining
mainstream Container Network Interfaces (CNIs), 50% installed powerful DaemonSets by default.

Excessive Permissions Lead to Impactful Attacks
When powerful permissions are loosely granted, they’re more likely to fall into the wrong hands. In Ku-
bernetes, that could occur in a number of ways, but it's most easily visible with powerful DaemonSets
and container escapes.
The blast radius of container escape drastically increases when powerful tokens are distributed across
every node by powerful DaemonSets. Based on the identified DaemonSets, in 50% of the Kubernetes
platforms reviewed, a single container escape was enough to compromise the entire cluster.
In 12.5% of platforms, a single container escape was likely enough to take over some clusters. For
another 12.5%, container escape was enough to compromise the entire cluster given a recommended
feature was enabled.

https://unit42.paloaltonetworks.com/siloscape/
https://unit42.paloaltonetworks.com/siloscape/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/

5Prisma by Palo Alto Networks | Kubernetes Privilege Escalation: Excessive Permissions in Popular Platforms | White Paper

Yes

50%

25%
No

12.5%
Likely in Some Clusters

12.5%
With Certain Features

Container Escape == Cluster Admin?

Figure 2: Impact of container escape in the analyzed Kubernetes platforms

RBAC Misconfigurations are Solvable
Prisma Cloud researchers worked with vendors and open source projects to strip excessive permissions
and reduce the distribution of powerful credentials. From the original 62.5% running powerful
 DaemonSets, only 25% remain. Likewise, the number of platforms where container escape is guaran-
teed to result in cluster takeover dropped from 50% to just 25%. This demonstrates that RBAC mis-
configurations are solvable and that powerful permissions can often be removed. It also highlights the
commitment of the reviewed vendors and open source projects to the security of their platforms.
To help Kubernetes users evaluate and improve the RBAC posture of their clusters, this report is
released alongside rbac-police, a new open source tool that can identify powerful permissions and
privilege escalation paths in Kubernetes clusters. New RBAC checks were also contributed to Checkov,
a leading open source infrastructure as code (IaC) scanner.
Finally, the Recommendations section explores a number of best practices that decrease the distri-
bution of powerful credentials and limit the blast radius of compromised ones, along with admission
policies that can detect and prevent privilege escalation attacks in real time.

https://www.github.com/PaloAltoNetworks/rbac-police
https://www.checkov.io/

6Prisma by Palo Alto Networks | Kubernetes Privilege Escalation: Excessive Permissions in Popular Platforms | White Paper

The ‘reader-sa’ service account is now authorized to perform the operations listed in the ‘pod-reader’
ClusterRole.

As seen above, Kubernetes permissions are expressed by rules. Each rule permits one or more verbs
over one or more resources in one or more API groups. The rule above permits listing and getting pods
in the core API group. Common verbs include:
• get: retrieve a resource by name
• list: retrieve all resources
• create: create a resource
• update: replace an existing resource
• patch: modify an existing resource
• delete: delete a resource
Roles and ClusterRoles (i.e., permissions) can be granted to a pod by bind-
ing them to its service account, as illustrated in figure 3. A pod assigned
the ‘reader-sa’ service account, for example, will be able to retrieve pods
cluster-wide.

Role

RoleBinding

Pod

ServiceAccount

Figure 3: A Role granted to a pod

Role-Based Access Control 101
Kubernetes RBAC is an authorization scheme that governs access to Kubernetes resources. Permissions
are grouped into Roles or ClusterRoles, and can be granted via RoleBindings or ClusterRoleBindings to
users, groups, and service accounts. Permissions granted via RoleBindings are scoped to a namespace,
while ones granted via ClusterRoleBindings are in effect cluster-wide.
The ClusterRoleBinding that follows, for example, grants the ‘pod-reader’ ClusterRole to the ‘read-
er-sa’ service account.

7Prisma by Palo Alto Networks | Kubernetes Privilege Escalation: Excessive Permissions in Popular Platforms | White Paper

Table 1: Powerful Kubernetes Permissions by Attack Class

Manipulate AuthN/Z Acquire Tokens RCE Steal Pods MitM

impersonate list secrets create pods/exec modify nodes control endpointslices

escalate create secrets update pods/ephemeral-
containers modify nodes/status modify endpoints

bind create serviceaccounts/
token create nodes/proxy create pods/eviction modify services/status

approve signers create pods control pods delete pods modify services/status

update certificatesignin-
grequests/approval control pod controllers control pod controllers delete nodes modify pods

control mutating
 webhooks

control validating
 webhooks

control mutating web-
hooks modify pods/status create services

— control mutating
 webhooks — modify pods control mutating

 webhooks

Scope is key when it comes to powerful permissions. A permission can be admin-equivalent when
granted over the entire cluster, but harmless when scoped to a namespace or to specific resource
names. In order to include all possible powerful permissions, the table above assumes permissions are
granted cluster-wide.
Certain powerful permissions enable a number of attacks and are thus mapped to multiple attack
classes. On the other hand, some of the more complicated attacks require a combination of their listed
permissions to carry out. Permissions that aren’t powerful enough to carry the attack on their own are
marked in yellow.
To avoid disproportionate inflation, Table 1 aggregates similar verbs and resources. The update and
patch verbs were aggregated to a virtual “modify” verb, while modify and create were combined to
“control”. DaemonSets, Deployments, CronJobs and other pod controllers were counted as “pod con-
trollers”. Therefore, write privileges over pod controllers are represented as one virtual “control pod
controllers” permission rather than the actual 21 related permissions (e.g., create Deployments, update
Deployments, patch Deployments, create CronJobs, etc.).

Figure 4: Powerful RBAC permissions by attack class

Manipulate AuthN/Z

Acquire Tokens

RCE

Steal Pods

Meddler-in-the-Middle

1

6

0 2 4 6 8

7

6

of powerful permissions

7

7

Classifying Powerful Kubernetes Permissions
Attackers may abuse certain Kubernetes permissions to escalate privileges, move laterally or obtain
broader control over a cluster. From here on, those will be referred to as ‘powerful permissions.’
Some powerful permissions are near-equivalent to cluster admin, while others can only be abused in
specific scenarios for limited attacks. To establish a common framework when discussing powerful
permissions, we classified them based on the attacks they enable into five attack types.

8Prisma by Palo Alto Networks | Kubernetes Privilege Escalation: Excessive Permissions in Popular Platforms | White Paper

It’s unlikely that Table 1 contains every powerful permission in Kubernetes, but it’s the most complete
list we’re aware of. It’s also worth noting that there are other “weaker” attack classes that we haven’t
looked into, such as Denial-of-Service (DoS).
Below is a breakdown of each attack class.

Acquire Tokens
This group contains permissions that allow, either directly or indirectly, to retrieve or issue service
 account tokens. The main factor that dictates the impact of these permissions is their scope— whether
or not they’re granted over a privileged namespace that hosts powerful service accounts. The only
namespace that’s privileged by default is kube-system, but some platforms may install additional
 privileged namespaces.
Permissions include: create pods, create secrets, list secrets, update Deployments, create
 serviceaccounts/token

Attack Example
An attacker armed with the create serviceaccounts/token permission in the kube-system namespace
can issue new tokens for pre-installed powerful service accounts through TokenRequests.

Remote Code Execution
Permissions in this group allow executing code on pods, and possibly on nodes. Attackers won’t neces-
sarily escalate privileges by abusing these permissions—it depends on the permissions of the attacked
pod or node. Still, these permissions increase the compute resources and possibly the business logic
that is under the attacker’s control.
Permissions include: create pods/exec, create nodes/proxy, patch DaemonSets, create pods

Attack Example
An attacker armed with the create pods/exec permission can execute code on other pods, for example
via the interface provided by kubectl exec.

Manipulate Authentication/Authorization (AuthN/AuthZ)
Permissions in this group permit manipulation of authentication and authorization. They often enable
privilege escalation by design for use cases like granting permissions or impersonating other identities.
They’re extremely powerful, and users should be extra careful when granting them.
Permissions include: bind clusterrolebidings, impersonate serviceaccounts, escalate roles

Attack Example
An attacker that can bind clusterrolebindings can grant the pre-installed cluster-admin clusterrole to
his compromised identity.

Steal Pods
Certain permissions or permission combinations may allow attackers to steal pods from one node to
another. For this attack to be impactful, the attacker must first compromise a node where he intends to
place the stolen pod. Stealing a pod consists of two steps: evicting a pod, and then ensuring it lands on
your node. To maximize impact, attackers would target pods with powerful service account tokens.
A similar attack—affecting the scheduling of future pods—isn’t covered as part of this report.
Permissions include: update nodes, create pods/eviction, delete pods, update nodes/status

Attack Example
An attacker that compromised a node and has the update nodes permission can steal pods from other
nodes onto his compromised node. By adding a taint with the NoExecute effect to the target node, the
attacker can force Kubernetes to evict and reschedule the target node’s pods. By adding a taint with the
NoSchedule effect to all other nodes, the attacker can ensure the evicted pods are rescheduled onto his
compromised node.
It’s worth noting that pods that tolerate NoExecute taints cannot be stolen through this technique.
These pods aren’t very common, but one popular example would be the admin-equivalent “tigera-
operator” pod installed by Calico.
 To the best of our knowledge, stealing pods with NoExecute taints is a novel attack technique.

https://kubernetes.io/docs/reference/kubernetes-api/authentication-resources/token-request-v1/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration

9Prisma by Palo Alto Networks | Kubernetes Privilege Escalation: Excessive Permissions in Popular Platforms | White Paper

Meddler-in-the-Middle
Permissions in this group may allow attackers to launch meddler (man)-in-the-middle attacks against
pods, nodes, or services in the cluster. Exploiting permissions in this group often requires a number of
prerequisites for relatively weak impact. Additionally, securing communication with TLS can nullify
most MitM attacks.
Permissions include: update services/status, control endpointslices, patch pods/status

Attack Example
An attacker armed with the update services/status permission can exploit CVE-2020-8554 via Load
Balancer IPs to redirect traffic sent by pods and nodes from its intended target to an existing endpoint.
The attacker must control an existing endpoint for this to be a meaningful attack.

Container Escapes and Powerful DaemonSets: A Toxic
Combination
When powerful permissions are loosely granted, they’re more likely to fall into the wrong hands. In Ku-
bernetes, that could occur in a number of ways, but it's most easily visible with powerful DaemonSets
and container escapes.
The blast radius of container escapes drastically increases when powerful DaemonSets distribute
powerful tokens across every node in the cluster. With powerful DaemonSets installed, attackers
that managed to escape a container are guaranteed to hit the jackpot—powerful credentials on their
 compromised node.

Figure 5: Powerful DaemonSets drastically increase the impact of container escape

api-server

Pod

Trampoline

Node

Pod

Trampoline

Node

Pod

Trampoline

Node

We use “Trampoline pods” as a synonym for powerful pods. The name denotes their impact: attack-
ers that manage to compromise a Trampoline pod or its node can abuse its token to jump around the
cluster, compromise other nodes and gain higher privileges. Not all Trampolines offer the same bounce.
Depending on their permissions, some may allow an attacker to compromise the entire cluster, while
others may only be abused in certain scenarios.
It’s reasonable to run some powerful pods. Powerful permissions exist for a reason: they’re sometimes
needed. Powerful pods that don’t run as parts of DaemonSets can be isolated from untrusted and pub-
licly exposed ones through several methods (described in “Recommendations”). Even without actively
taking measures to isolate them, non-DaemonSet Trampolines are simply less likely to be present on a
particular compromised node.

https://unit42.paloaltonetworks.com/cve-2020-8554/

10Prisma by Palo Alto Networks | Kubernetes Privilege Escalation: Excessive Permissions in Popular Platforms | White Paper

Figure 6: Non-DaemonSet trampolines can be isolated from
untrusted pods, either actively or by chance

Pod

Node

Pod

Node

Pod

Trampoline

Node

Pod Pod

What primarily makes Trampoline DaemonSets a security concern is the distribution of powerful creden-
tials. With powerful DaemonSets, every node in the cluster hosts powerful credentials, meaning attackers
that managed to escape a container are guaranteed to find a powerful token on the compromised node.

Figure 7: With Powerful DaemonSets, attackers are guaranteed
to find powerful credentials on a compromised node

Pod

Trampoline

Node

Pod

Trampoline

Node

Pod

Trampoline

Node

Aren’t Nodes Powerful by Default?
Without powerful DaemonSets, the only cluster credentials available on a node belong to the node
agent—the Kubelet. In 2017, Kubernetes addressed privilege escalation attacks rooted in the Kubelet
permissions by releasing the NodeRestriction admission controller. NodeRestriction limits the
 permissions of the Kubelet to resources that are already bound to its node, like the pods running on
top of it. As a result, nodes cannot escalate privileges or become cluster admins, and thus without
 Trampoline Pods, a container escape isn't enough to take over the entire cluster.
It's worth noting that NodeRestiction isn't perfect - Kubelets can still read most cluster objects, bypass
egress network policies, initiate certain Denial-of-Service (DoS) attacks, and even launch Meddler-
in-the-Middle attacks against pod-backed services. While these are all possible, it's important to
 differentiate from permissions that enable low severity attacks against certain configurations, from
ones that can be reliably abused to escalate privileges and compromise clusters.
The next section goes over Trampoline DaemonSets in popular Kubernetes platforms. We didn't consider
DaemonSets to be powerful if they only enabled low severity or unreliable attacks, including those that
Kubelets can carry out independently. Daemonsets were only considered powerful if their permissions
could realistically lead to a full cluster compromise.

Powerful DaemonSets in Popular Kubernetes Platforms
To understand the prevalence and real-world impact of powerful permissions, Prisma Cloud
 researchers analyzed eight popular Kubernetes platforms and looked for DaemonSets running with
powerful permissions.

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#noderestriction
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://github.com/kubernetes/enhancements/tree/master/keps/sig-auth/1314-node-restriction-pods

11Prisma by Palo Alto Networks | Kubernetes Privilege Escalation: Excessive Permissions in Popular Platforms | White Paper

Table 2: Analyzed Kubernetes Platforms

Platform Type Vendor

Analyzed Kubernetes Platforms Managed Service Microsoft Azure

Elastic Kubernetes Service (EKS) Managed Service Amazon Web Services

Google Kubernetes Engine (GKE) Managed Service Google Cloud Platform

Openshift Container Platform (OCP) Distribution Red Hat

Antrea CNI Open Source

Calico CNI Open Source

Cilium CNI Open Source

Weave Net CNI Open Source

Out of the Kubernetes platforms examined, 62.5% installed powerful DaemonSets by default, while
another 12.5% did so as well with a recommended feature enabled.

Figure 8: Popular DaemonSets in the analyzed Kubernetes platforms

Yes

62.5%

25%
No

12.5%
Certain Features

Table 3: Powerful DaemonSet in the Analyzed Kubernetes Platforms

Platform Powerful DaemonSets DaemonSet Most Powerful Permissions

AKS Yes cloud-node-manager, csi-azurefile-* list secrets, update nodes

EKS Yes aws-node update nodes

GKE Only with Dataplane v2 anetd update nodes, update pods

OCP Yes machine-config, sdn, multus-* create pods, update validatingwebhook-
configurations

Antrea Yes antrea-agent patch nodes, patch pods, update services,
update services/status

Calico No — —

Cilium Yes cilium update nodes, update pods, delete pods

Weave Net No — —

12Prisma by Palo Alto Networks | Kubernetes Privilege Escalation: Excessive Permissions in Popular Platforms | White Paper

Container Escape Blast Radius
Based on the identified powerful DaemonSets, in 50% of the Kubernetes platforms reviewed a single
container escape was enough to compromise the entire cluster. In another 12.5%, a container escape
was likely enough to take over some clusters. For 12.5% of platforms, a container escape was enough to
compromise the entire cluster given a recommended feature was enabled.

Figure 9: Impact of container escape in the analyzed Kubernetes platforms

Yes

50%

25%
No

12.5%
Likely In Some Clusters

12.5%
With Certain Features

Container Escape == Cluster Admin?

Table 4: Impact of Container Escape Across Analyzed Platforms

Platform Escape == Admin Attack Prerequisite

AKS Yes Acquire Token → Manipulate AuthN/Z —

EKS Likely in some clusters Steal Pods A stealable powerful pod

GKE With Dataplane v2 Steal Pod / RCE → Acquire token → Manip-
ulate AuthN/Z Dataplane v2 enabled

OCP Yes Acquire Token —

Antrea Yes Steal Pods / RCE → Acquire token →
 Manipulate AuthN/Z —

Calico No — —

Cilium Yes Steal Pod / RCE -→ Acquire token → Ma-
nipulate AuthN/Z —

Weave Net No — —

In some platforms, DaemonSets possessed admin-equivalent permissions, meaning that abusing them
to acquire admin privileges was straightforward. In other platforms, DaemonSets weren't powerful
enough to become full admins by themselves, but they did possess permissions that allowed them to
take over other pods. In most of these platforms, because admin-equivalent pods were installed by
default, attackers could still abuse the platform's DaemonSets to acquire admin privileges.
In Antrea, for example, the antrea-agent DaemonSet wasn't powerful enough to acquire admin privileg-
es by itself, but it did possess powerful permissions allowing it to take over other pods. Because Antrea
installs an admin-equivalent pod by default, the antrea-controller, antrea-agent's permissions could still
have been exploited to acquire admin privileges by abusing them to compromise the antrea-controller pod.

13Prisma by Palo Alto Networks | Kubernetes Privilege Escalation: Excessive Permissions in Popular Platforms | White Paper

If your clusters rely on one of the impacted platforms, please don’t panic. Here’s why:
1. To abuse powerful DaemonSets, attackers first need to compromise and then escape a container.

Best practices and active defenses can prevent that.
2. Several platforms have already released versions that de-privilege powerful DaemonSets.
3. Best practice hardenings can prevent certain attacks. For example, an allow-list policy for container

images can hinder lateral movement attacks that abuse the ‘patch pods’ permission to replace the
image of an existing pod with an attacker-controlled one.

4. That being said, if you run multitenant clusters, you’re at greater risk.
A “Likely in Some Clusters” in the “Escape == Admin” column signifies that there’s a prerequisite for
a container escape to be enough to compromise the entire cluster, but that it’s likely to be met in some
clusters. For example, an attacker abusing a powerful DaemonSet that can Steal Pods can only acquire
cluster admin privileges if there’s an admin-equivalent pod to steal in the cluster.
In EKS for example, there isn’t such a pod by default. Still, based on the sheer number of popular Ku-
bernetes add-ons that install admin-equivalent pods, it’s likely that this prerequisite is met in many
clusters in-the-wild. Some popular projects that install admin-equivalent pods by default include
ingress-nginx, cert-manager, Kynvero, traefik, and aws-load-balancer.
It's worth noting that with Cilium, there were two popular installation methods. The table above pertains
to the one documented as the default—the cilium-cli. While the default Helm installation also deployed
the same powerful DaemonSet that can take over other pods, it didn't deploy an admin-equivalent pod
that can be targeted by it. Accordingly, when Cilium was installed via Helm, a container escape was only
enough to compromise the entire cluster given the user installed an admin-equivalent pod (or, in other
words, "Likely in Some Clusters").

Powerful Kubelets in Popular Platforms
While the majority of Kubernetes distributions and managed services have adopted the NodeRestriction
admission controller, some still run powerful Kubelets. Powerful Kubelets introduce the same security risks
as powerful DaemonSets—compromised nodes can escalate privileges and take over the rest of the cluster.
Below is a breakdown of powerful Kubelets across the analyzed managed services and distributions.

Table 5: Powerful Kubelets Across Analyzed Managed Services and Distributions

Platform Type Powerful Kubelets

AKS Managed Service Yes

EKS Managed Service No

GKE Managed Service No

OCP Distribution No

Fixes and Mitigations by Affected Platforms
We reported the identified powerful DaemonSets and Kubelets to affected vendors and open source
projects between December 2021 and February 2022. The vast majority of platforms pledged to strip
powerful permissions from their Daemonsts, and some of them have already done so. From the original
62.5%, only 25% still run powerful DaemonSets.

Table 6: Fixes and Mitigations by Affected Platforms

Platform Had Powerful DaemonSets Fixed Had Powerful Kubelets Fixed

AKS Yes No Yes WIP

EKS Yes Yes, from Kubernetes v1.18 No —

GKE With Dataplane v2 Yes, from v1.23.4-gke.900, 13022$ Bounty No —

OCP Yes WIP set for v4.11, possible backports No —

Antrea Yes Yes, v1.6.1 alongside an admission policy No —

Calico No — No —

Cilium Yes Yes, v1.12.0-rc2, some fixes backported No —

Weave Net No — No —

https://antrea.io/docs/main/docs/security/#:~:text=Against%20Privilege%20Escalations-,Antrea%20Agent,-Like%20all%20other

14Prisma by Palo Alto Networks | Kubernetes Privilege Escalation: Excessive Permissions in Popular Platforms | White Paper

Platforms addressed powerful DaemonSets through a variety of techniques. Most applied one or more of
these three solutions:
1. Remove: Certain permissions were deemed unnecessary, or too widely scoped, and were simply

removed.
2. Relocate: Move the functionality that required the powerful permissions from DaemonSets

 running on all nodes to deployments that run on few, or to the control plane.
 3. Restrict: Release admission policies that limit powerful DaemonSets to a number of safe and

 expected operations.
According to the improvements above, the number of platforms where a single container escape is
enough to compromise the entire cluster dropped from 50% to just 25%. Keep in mind that this number
pertains to Kubernetes-native attacks and doesn’t cover possible platform-specific privilege escalations.

Figure 10: Impact of container escape in the analyzed Kubernetes platforms following fixes

75%
No

Yes

25%

Container Escape == Cluster Admin?

Stripping existing permissions can be challenging. We’d like to thank the vendors and open source
projects mentioned in this report for their effort to remove powerful DaemonSets and Kubelets from
their platforms.

Toward Better Node Isolation
One step at a time, Kubernetes is moving toward stronger node isolation. This effort started with the
NodeRestriction admission controller and is slowly inching forward with every powerful permission
removed from a popular DaemonSet. Complete node isolation is unlikely in the near future: some low
severity attacks will likely remain, and certain nodes will need to host powerful pods. That being said,
better node isolation is certainly possible. At the very least, clusters shouldn't host powerful credentials
on every node. Removing Trampoline DaemonSets can ensure the majority of nodes are unprivileged.
Some powerful permissions will be harder to drop, in part due to the lack of fine-grained access control
for certain operations. This shouldn't be seen as an "all or nothing" issue though. Even when certain
permissions cannot be easily stripped, it's still a welcomed improvement when a DaemonSet that could
previously acquire admin tokens is now only able to launch meddler-in-the-middle attacks.

Identifying Powerful Permissions
Whether you use a mentioned platform or not, if you run Kubernetes, your clusters likely host powerful
pods. The first step of addressing risky permissions is identifying them. The following tools can be used
to identify powerful permissions in running clusters and in Kubernetes manifests.

15Prisma by Palo Alto Networks | Kubernetes Privilege Escalation: Excessive Permissions in Popular Platforms | White Paper

Figure 11: rbac-police alerts on excessive permissions of service accounts, pods, and nodes

Out of the box, rbac-police is equipped with more than 20 policies that each hunt for a different set of
powerful permissions. It’s also 100% customizable though. You can write your own policies that search
for any pattern in Kubernetes RBAC—powerful permissions we’ve missed, permissions that only affect
certain platforms, or ones related to CRDs (Custom Resources Definitions). If you end up writing a policy,
please consider contributing it.
Supported commands for rbac-police are as follows:
• rbac-police eval evaluates the RBAC permissions of services accounts, pods, and nodes through

built-in or custom Rego policies.
• rbac-police collect retrieves the RBAC permissions of services accounts, pods, and nodes in a clus-

ter. Useful for saving a RBAC snapshot of the cluster for multiple evaluations with different options.
• rbac-police expand presents the RBAC permissions of services accounts, pods, and nodes in a

slightly more human friendly format. Useful for manual drilldown.
For fine-tuned evaluation, rbac-police provides a variety of options, including:
• --only-sa-on-all-nodes to evaluate only service accounts that exist on all nodes. Useful for identi-

fying powerful DaemonSets.
• --namespace, --ignored-namespaces to scope evaluation to a single namespace; ignore certain

namespaces.
• --severity-threshold to evaluate only policies with severity equal or larger than a threshold.
Additionally, rbac-police also supports policies that evaluate the effective permissions of a node—the
union of its Kubelet permissions and pods’ permissions. Some of the more complex attacks require a
number of permissions to execute. Thus, it is possible that while no single pod has all the permissions
necessary to carry out an attack, a combination of pods on a node do.
Check out rbac-police’s GitHub page for more information. If you run Kubernetes, consider trying it out.
It takes seconds to run and provides a lot of valuable insight into your RBAC posture and possible risks.

rbac-police
We’re very excited to release rbac-police, a tool we used throughout this research to identify powerful
permissions.
An open source command line interface (CLI) written in Golang, rbac-police retrieves the permissions
of pods, nodes, and services accounts in a cluster, and evaluates them through built-in or custom Rego
policies. Assessing the RBAC posture of your cluster is as easy as running ‘rbac-police eval lib’.
The image below shows a slice of rbac-police’s output:

https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/
https://github.com/PaloAltoNetworks/rbac-police
https://github.com/PaloAltoNetworks/rbac-police
https://www.openpolicyagent.org/docs/latest/policy-language/

16Prisma by Palo Alto Networks | Kubernetes Privilege Escalation: Excessive Permissions in Popular Platforms | White Paper

Check out Checkov’s website for more information.

Recommendations
Tackling powerful RBAC permissions can be complex. They’re easy to miss and often asked by
third-party add-ons or the underlying infrastructure. Even when you manage the powerful component,
dropping permissions isn’t always straightforward and often involves code changes.
Whether you run Kubernetes clusters or maintain a popular Kubernetes project, below are best practic-
es and hardening measures that can improve your RBAC posture.
1. Follow the principle of least privilege: only assign explicitly required permissions:
 a. When possible, use RoleBindings to grant permissions over a certain namespace rather than clus-

ter-wide.
 b. Use resourceNames to scope down permissions to specific resources.
2. Track powerful permissions and ensure they’re not granted to less-trusted or publicly exposed pods.

If you maintain a Kubernetes project, document the powerful permissions asked by your platform.
3. Refrain from running powerful DaemonSets:
 a. Move functionalities that require powerful privileges from DaemonSets running on all nodes to

deployments running on few or to control plane controllers.
 b. Rely on the Kubelet credentials for operations that only involve objects bound to the local node,

such as retrieving secrets of neighboring pods.
 c. Minimize write permissions by storing state in CRDs and ConfigMaps rather than in core objects

like pods.
4. Isolate powerful pods from untrusted or publicly exposed ones using scheduling constraints like

Taints and Tolerations, NodeAffinity rules, or PodAntiAfinity rules.

Checkov
Checkov is an open source static code analysis tool by Bridgecrew for scanning infrastructure as code (IaC)
files for misconfigurations that may lead to security or compliance problems. Checkov shifts security left
by alerting on misconfigurations before they’re committed to production environments.
We’ve recently contributed four new RBAC checks that alert on Kubernetes IaC files containing Roles or
ClusterRoles that define powerful permissions: CKV_K8S_155, CKV_K8S_156, CKV_K8S_157 and CKV_
K8S_158. These focus on highly powerful permissions that can be abused to manipulate authentication
and authorization, such as impersonation.
Checkov is currently adding support for graph checks that can evaluate connections between multiple
Kubernetes resources. Once that feature is released, expect to see more RBAC checks added.

Figure 12: Checkov alerts on a ClusterRole with powerful permissions

https://www.checkov.io/
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#referring-to-resources
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#node-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#types-of-inter-pod-affinity-and-anti-affinity
https://www.checkov.io/
https://www.checkov.io/5.Policy%20Index/kubernetes.html
https://www.checkov.io/5.Policy%20Index/kubernetes.html

17Prisma by Palo Alto Networks | Kubernetes Privilege Escalation: Excessive Permissions in Popular Platforms | White Paper

5. Configure policy controllers to alert on automated identities such as service accounts and nodes that
query for their permissions via the SelfSubjectReviews APIs. These requests may point to compro-
mised credentials.

6. Configure policy controllers to detect or prevent misuse of powerful permissions for nefarious activ-
ities. Abuse of powerful permissions often diverges from normal usage. See the examples below for
more details.

Detecting Attacks with Admission Control
Quite often, compromised credentials exhibit irregular behaviors, and present an opportunity for de-
fenders to identify breaches. In Kubernetes, admission control can detect and prevent attacks powered
by compromised credentials and privileged permissions. Policy controllers like OPA Gatekeeper and
Kynvero can enforce policies that prevent or alert on suspicious requests to the Kubernetes API. Below
are two examples for this approach using OPA Gatekeeper.

Suspicious SelfSubjectReviews
A common attacker pattern following credential theft is querying the system for their permissions. In
Kubernetes, that is done via the SelfSubjectAccessReview or SelfSubjectRulesReview APIs. Non-human
identities like serviceAccounts and nodes querying these APIs for their permissions are strong indica-
tors of compromise. A policy that detects these requests offers a great opportunity to catch compro-
mised credentials.
Here’s an example of a policy for OPA Gatekeeper that detects such queries.

Suspicious Assignment of Controller Service Accounts
By default, the kube-system namespace hosts several admin-equivalent service accounts that are used
by controllers running as part of the api-server. Attackers that can create pods or pod controllers in
the kube-system namespace, or modify pod controllers in kube-system namespace, can assign one
of these admin-equivalent service accounts to a pod in their control and abuse their powerful token to
gain complete control over the cluster.
In the framework introduced in “Classifying Powerful Kubernetes Permissions,” this attack is classified
under Acquire Tokens.
Controller service accounts aren’t normally assigned to running pods. Defenders can capitalize on that
to detect this privilege escalation attack with a policy that alerts on requests that attach a controller
service account to an existing or new kube-system pod. We wrote an example for OPA Gatekeeper,
which is available here.

Conclusion
As outlined in this report, excessive RBAC permissions are common, easily missed, and can result in
impactful privilege escalation attacks against Kubernetes clusters. At the same time, hardened RBAC
settings can enforce least privilege, block unintended access, and demoralize attackers.
Maintaining a secure RBAC posture can be challenging due to the dynamic nature of Kubernetes and the
number of third-party add-ons commonly used to operate modern clusters. Refer to the “Identifying
Powerful Permissions” section for tools like rbac-police that can evaluate your RBAC posture, and see
the “Recommendations” section for ways you can minimize risk and hold off attacks even when some
powerful pods still exist in a cluster.
We’d like to thank the vendors and open source projects mentioned in this report for their collaboration
as well as their efforts to minimize the distribution of powerful credentials in their platforms.

https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/
https://kubernetes.io/docs/reference/access-authn-authz/authorization/#checking-api-access
https://open-policy-agent.github.io/gatekeeper/website/docs/
https://open-policy-agent.github.io/gatekeeper/website/docs/
https://kyverno.io/
https://github.com/PaloAltoNetworks/rbac-police/tree/main/prevent
https://github.com/PaloAltoNetworks/rbac-police/tree/main/prevent
https://github.com/PaloAltoNetworks/rbac-police

18Prisma by Palo Alto Networks | Kubernetes Privilege Escalation: Excessive Permissions in Popular Platforms | White Paper

About
Prisma Cloud
Prisma® Cloud is a comprehensive cloud native security platform with the industry’s broadest secu-
rity and compliance coverage—for applications, data, and the entire cloud native technology stack—
throughout the development lifecycle and across hybrid and multicloud deployments. Prisma Cloud’s
integrated approach enables security operations and DevOps teams to stay agile, collaborate effectively,
and accelerate cloud native application development and deployment securely.
Prisma Cloud’s Cloud Workload Protection (CWP) module delivers flexible protection to secure cloud
VMs, containers and Kubernetes apps, serverless functions and containerized offerings like Fargate tasks.
Using the built-in admission control for Kubernetes, users can enforce policies that alert on suspicious or
non-compliant activities in their cluster, including Kubernetes privilege escalation. Refer to CWP’s sam-
ple repository for admission policies that can detect the attacks outlined in this report
Prisma Cloud’s Cloud Code Security (CCS) module delivers automated security for cloud native infra-
structure and applications, integrated with developer tools. The module shifts security left by catching
misconfigurations in code and IaC before they’re pushed to production. Prisma Cloud CSS is powered by
Checkov, the popular open source policy-as-code IaC scanner, and will soon leverage the newly contrib-
uted Kubernetes RBAC checks to identify and alert on powerful permissions in Kubernetes manifests.

Unit 42
Unit 42 brings together our world-renowned threat researchers with an elite team of security consul-
tants to create an intelligence-driven, response-ready organization. The Unit 42 Threat Intelligence
team provides threat research that enables security teams to understand adversary intent and attri-
bution while enhancing protections offered by our products and services to stop advanced attacks. As
threats escalate, Unit 42 is available to advise customers on the latest risks, assess their readiness, and
help them recover when the worst occurs. The Unit 42 Security Consulting team serves as a trusted
partner with state-of-the-art cyber risk expertise and incident response capabilities, helping custom-
ers focus on their business before, during, and after a breach.

Authors
Yuval Avrahami, Principal Security Researcher, Palo Alto Networks
Shaul Ben Hai, Staff Security Researcher, Palo Alto Networks

Contributors
This report would not be possible without the tremendous work and efforts taken by the larger Palo Alto
Networks team. The following people assisted significantly in its creation.
Reviewing
Ariel Zelivansky
Jay Chen
Nathaniel Quist
Sharon Ben Zeev
Editing
Grace Cheung
Aimee Savran

https://www.paloaltonetworks.com/prisma/cloud
https://www.paloaltonetworks.com/prisma/cloud/cloud-workload-protection-platform
https://docs.paloaltonetworks.com/prisma/prisma-cloud/21-04/prisma-cloud-compute-edition-admin/access_control/open_policy_agent
https://github.com/PaloAltoNetworks/prisma-cloud-compute-sample-code/tree/main/admission-controller
https://github.com/PaloAltoNetworks/prisma-cloud-compute-sample-code/tree/main/admission-controller
https://www.paloaltonetworks.com/prisma/cloud/cloud-code-security
https://unit42.paloaltonetworks.com/
https://www.paloaltonetworks.com/unit42

19Prisma by Palo Alto Networks | Kubernetes Privilege Escalation: Excessive Permissions in Popular Platforms | White Paper

Appendix A: Powerful Permissions by Attack Class
Manipulate Authentication/Authorization (AuthN/AuthZ)
impersonate users/groups/serviceaccounts
Impersonate other identities, such as users, groups, and service accounts.
escalate roles/clusterroles
Add arbitrary permissions to existing roles or clusterroles.
bind rolebindings/cluster role bindings
Grant existing roles or clusterroles to arbitrary identities.
approve signers & update certificatesigningrequests/approval
Have an existing signer approve a certificatesigningrequest.
control mutating webhooks
Mutate admitted roles and clusterroles.

Acquire Tokens
list secrets
Retrieve service account tokens for existing service accounts in a namespace.
This attack is set to be addressed in the future by Kubernetes Enhancement Proposal (KEP) 2799:
 Reduction of Secret-based Service Account Tokens.
create secrets
Issue new service account tokens for existing service accounts.
create serviceaccounts/token
Issue temporary service account tokens for existing service accounts via TokenRequests.
create pods
Assign an existing service account to a new pod, allowing the pod to access its token. Alternatively, attach
the token secret of an existing service account token to a new pod as an environment variable or volume.
control pod controllers
Assign an existing service account to new or existing pods, allowing them to access its token.
 Alternatively, attach the token secret for an existing service account token to new or existing pods as an
environment variable or volume.
control validating webhooks
Get tokens as they're created, for example when a token secret is created for a new service account.
control mutating webhooks
Get tokens as they're created, for example when a token secret is created for a new service account.
Attach service account tokens to new pods.

Remote Code Execution
create pods/exec
Execute commands in an existing pod via the API server.
update pods/ephemeralcontainers
Attach a new container to an existing pod to execute code on it. Attach the container as privileged to
execute code on the underlying node.
create nodes/proxy
Execute commands in the existing pod via the Kubelet.
control pods
Replace the image of a container by modifying an existing pod. Create a new privileged pod to execute
code on a node.
control pod controllers
Freely create or modify pods via pod controllers like Deployments. Execute code on nodes by setting a
container to be privileged.
control mutating webhooks
Mutate admitted pods and execute code by replacing the image, command, arguments, environment
variable, or volumes for one of their containers.

https://github.com/kubernetes/enhancements/tree/master/keps/sig-auth/2799-reduction-of-secret-based-service-account-token

3000 Tannery Way
Santa Clara, CA 95054

Main: +1.408.753.4000
Sales: +1.866.320.4788
Support: +1.866.898.9087

www.paloaltonetworks.com

© 2022 Palo Alto Networks, Inc. Palo Alto Networks is a registered
trademark of Palo Alto Networks. A list of our trademarks can be found at
https://www.paloaltonetworks.com/company/trademarks.html. All other
marks mentioned herein may be trademarks of their respective companies.
prisma_wp_kubernetes-privilege-escalation_051222

Steal Pods
modify nodes
Evict a pod by tainting its node with the NoExecute effect. Ensure its replacement (given the pod is
managed by ReplicaSets, for example) lands on a specific node by marking others as unscheduled, for
example via a NoSchedule taint.
modify nodes/status
Mark a node as unschedule, for example by setting its pod capacity to 0.
create pods/eviction
Evict a pod, mainly in order to cause controllers like ReplicaSets to respawn it.
delete pods
Delete a pod to cause controllers like ReplicaSets to respawn it.
delete nodes
Delete a node to delete its pods, and cause controllers like ReplicaSets to respawn it.
modify pods/status
Match a pod's labels to the selector of an existing replica controller (e.g. a ReplicaSet) in the same
namespace, to trick it into deleting an existing replica. Ensure the fake pod isn't the one being deleted
by setting his ready time to be the earliest among replicas.
modify pods
Match a pod's labels to match the selector of a replica controller like a ReplicaSet in the same
 namespace, to trick it into deleting an existing replica.

Meddler-in-the-Middle
control endpointslices
Modify existing endpointslices for existing services to redirect some of their traffic. Create new end-
pointslices for existing services to redirect some of their traffic.
modify endpoints
Modify the endpoint of an existing service to redirect the service's traffic elsewhere. This attack is nul-
lified on clusters configured to use endpointslices instead of endpoints.
modify services/status
Attach a Load Balancer IP to exploit CVE-2022-8554 and redirect traffic from pods and nodes from
their designated target to existing endpoints.
modify pods/status
Match a pod's labels to the selector of a service in the same namespace to intercept some of its traffic.
modify pods
Match a pod's labels to the selector of a service in the same namespace to intercept some of its traffic.
create services
Create an ExternalIP service to exploit CVE-2022-8554 and redirect traffic from pods and nodes from
their designated target to existing endpoints.
control mutating webhooks
Mutate newly admitted services, endpoints and endpointslices to redirect cluster traffic.

